The swirling flow of a viscoelastic fluid in a cylindrical casing is investigated experimentally, using aqueous solutions of 0.05–1.0wt.% polyacrylamide as the working fluid. The velocity measurements are made using laser Doppler anemometer. The aspect ratios HR (H: axial length of cylindrical casing; R: radius of rotating disk) investigated are 2.0, 1.0, and 0.3. The Reynolds numbers Re0 based on the zero shear viscosity and the disk-tip velocity are between 0.36 and 50. The velocity measurements are mainly conducted for the circumferential velocity component. The experimental velocity data are compared to the velocity profiles obtained by numerical simulations using Giesekus model and power-law model. It is revealed that at any aspect ratios tested the dimensionless circumferential velocity component Vθ decreases with increasing Weissenberg number We. Both the Giesekus and power-law models could predict the retardation of circumferential velocity fairly well at small We. The extent of the inverse flow region, where the fluid rotates in the direction opposite to the rotating disk, is clarified in detail.

1.
Hill
,
C. T.
, 1972, “
Nearly Viscometric Flow of Viscoelastic Fluids in the Disc and Cylinder System. II: Experimental
,”
Trans. Soc. Rheol.
0038-0032,
16
, pp.
213
245
.
2.
Day
,
C.
,
Harris
,
J. A.
,
Soria
,
J.
,
Boger
,
D. V.
, and
Welsh
,
M. C.
, 1996, “
Behavior of an Elastic Fluid in Cylindrical Swirling Flow
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
250
255
.
3.
Escudier
,
M. P.
, and
Cullen
,
L. M.
, 1996, “
Flow of a Shear-Thinning Liquid in a Container With a Rotating End Wall
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
381
387
.
4.
Stokes
,
J. R.
, and
Boger
,
D. V.
, 2000, “
Mixing of Viscous Polymer Liquids
,”
Phys. Fluids
1070-6631,
12
(
6
), pp.
1411
1416
.
5.
Stokes
,
J. R.
,
Lachlan
,
J. W.
,
Graham
,
J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids, Part 1, Interaction between Inertia and Elasticity
,”
J. Fluid Mech.
0022-1120,
429
, pp.
67
115
.
6.
Stokes
,
J. R.
,
Lachlan
,
J. W.
,
Graham
,
J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids, Part 2, Elastic Effects
,”
J. Fluid Mech.
0022-1120,
429
, pp.
117
153
.
7.
Kramer
,
J. M.
, and
Johnson
,
M. W.
, 1972, “
Nearly Viscometric Flow in the Disk and Cylinder System. I: Theoretical
,”
Trans. Soc. Rheol.
0038-0032,
16
, pp.
197
212
.
8.
Böhme
,
G.
,
Rubart
,
L.
, and
Stenger
,
M.
, 1992, “
Vortex Breakdown in Shear-Thinning Liquids: Experiment and Numerical Simulation
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
45
, pp.
1
20
.
9.
Xue
,
S. C.
,
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1999, “
Fully Three-Dimensional, Time-Dependent Numerical Simulations of Newtonian and Viscoelastic Swirling Flows in a Cylinder Part I. Method and Steady Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
87
, pp.
337
367
.
10.
Siginer
,
D. A.
, 2004, “
On the Nearly Viscometric Torsional Motion of Viscoelastic Liquids Between Shrouded Rotating Disks
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
71
, pp.
305
313
.
11.
Itoh
,
M.
,
Moroi
,
T.
, and
Toda
,
H.
, 1998, “
Viscoelastic Flow Due to a Rotating Disc Enclosed in a Cylindrical Casing
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
64
(
621
), pp.
1351
1358
(in Japanese).
12.
Moroi
,
T.
,
Itoh
,
M.
, and
Toda
,
H.
, 1998, “
Viscoelastic Flow Due to a Rotating Disc Enclosed in a Cylindrical Casing
,”
Proc. 13th Australasian Fluid Mechanics Conference
, pp.
313
316
.
13.
Moroi
,
T.
,
Itoh
,
M.
, and
Fujita
,
K.
, 1999, “
Viscoelastic Flow Due to a Rotating Disc in a Cylindrical Casing (Numerical Simulation and Experiment)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
65
(
639
), pp.
3361
3568
(in Japanese).
14.
Moroi
,
T.
,
Itoh
,
M.
,
Fujita
,
K.
, and
Hamasaki
,
H.
, 2001, “
Viscoelastic Flow Due to a Rotating Disc in a Cylindrical Casing (Influence of Aspect Ratio)
,”
JSME Int. J., Ser. B
1340-8054,
44
(
3
), pp.
465
473
.
15.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids
, Vol.
1
,
Wiley
, New York, Chap. 4.
16.
Giesekus
,
H.
, 1982, “
A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
11
, pp.
69
109
.
17.
Kawabata
,
N.
,
Tachibana
,
M.
, and
Ashino
,
I.
, 1990, “
A Numerical Simulation of Viscoelastic Fluid Flow in a Two-Dimensional Channel (Application of Lax’s Scheme to the Constitutive Equation)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
56
(
523
), pp.
47
54
(in Japanese).
18.
Sasmal
,
G. P.
, 1990, “
Finite Volume Approach for Calculation of Viscoelastic Flow Through an Abrupt Axisymmetric Contraction
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
56
, pp.
15
47
.
You do not currently have access to this content.