The paper presents a complete gradient theory of grade two, including new dissipative boundary conditions based on an axiomatic conception of a nonlocal continuum theory for materials of grade n. The total stress tensor of rank two in the equation of linear momentum contains two higher stress tensors of rank two and three. In the case of isotropic materials, both the tensors of rank two and three are tensor valued functions of the second order strain rate tensor and its first gradient. So the vector valued differential equation of motion is of order four, where the necessary dissipative boundary conditions are generated by using porosity tensors. An application to hydrodynamic turbulence by a linear theory is shown, whereby fully developed steady turbulent channel flows with fixed walls and one moving wall are also examined. The velocity distribution parameters are identified by a numerical optimization algorithm, using experimental data of velocity profiles of channel flow with fixed walls from the literature. These profiles were compared with others given in the literature. With these derived parameters, the predicted velocity gradient of a channel flow agrees well with data from the literature. In addition all simulations were successfully carried out using the finite difference method.

1.
Eringen
,
A. C.
, 1964, “
Mechanics of Micromorphic Materials
,” in
Proceedings of the 11th International Congress of Applied Mechanics
,
H.
Gortler
, ed.,
Springer Verlag
, pp.
131
138
.
2.
Eringen
,
A. C.
, 1966, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
0095-9057
16
(
6
), pp.
909
923
.
3.
Eringen
,
A. C.
, 1966 “
Theory of Micropolar Fluids
,”
J. Math. Mech.
0095-9057
16
(
1
), pp.
1
18
.
4.
Eringen
,
A. C.
, 1974, “
Polar and Nonlocal Theories of Continua
,”
Bogazici University
, Turkey, p.
137
.
5.
Eringen
,
A. C.
, 1976,
Continuum Physics-Polar and Nonlocal Field-Theories
,
Academic
,
New York
.
6.
Eringen
,
A. C.
, 2001,
Microcontinuum Field Theories II: Fluent Media
,
Springer
.
7.
Maugin
,
G. A.
, 1980, “
The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields
,”
Acta Mech.
0001-5970,
35
, pp.
1
70
.
8.
Eringen
,
A. C.
, 2003, “
Incompressible Micromorphic Fluid Model for Turbulence
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
1041
1057
.
9.
Eringen
,
A. C.
, 2005, “
On a Rational Theory of Turbulence
,”
Int. J. Eng. Sci.
0020-7225,
43
, pp.
209
221
.
10.
Kirwan
,
A. D.
,
Newman
,
N.
, and
Chang
,
M.-S.
, 1976, “
On Microdeformable Fluids: A Special Case of Microfluids
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
673
684
.
11.
Liu
,
C. Y.
, 1970, “
On Turbulent Flow of Micropolar Fluids
,”
Int. J. Eng. Sci.
0020-7225,
8
, pp.
457
466
.
12.
Peddieson
,
J.
, 1972, “
An Application of the Micropolar Fluid Model to the Calculation of a Turbulent Shear Flow
,”
Int. J. Eng. Sci.
0020-7225,
10
,
23
32
.
13.
Ariman
,
T.
,
Turk
,
M. A.
, and
Sylvester
,
N. D.
, 1973, “
Microcontinuum Fluid Mechanics—A Review
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
905
930
.
14.
Ahmadi
,
G.
, 1975, “
Turbulent Shear Flow of Micropolar Fluids
,”
Int. J. Eng. Sci.
0020-7225,
13
, pp.
959
964
.
15.
Mindlin
,
R. D.
, 1965, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
1
, pp.
417
438
.
16.
Cheverton
,
K. J.
, and
Beatty
,
M. F.
, 1975, “
On the Mathematical Theory of the Mechanical Behavior of Some Non-Simple Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
60
, pp.
1
16
.
17.
Drouot
,
R.
, and
Maugin
,
G. A.
, 1983, “
Phenomenological Theory for Polymer Diffusion in Nonhomogeneous Velocity-Gradient Flows
,”
Rheol. Acta
0035-4511,
22
, pp.
336
347
.
18.
Trostel
,
R.
, 1985, “
Gedanken zur Konstruktion mechanischer Theorien
,” Beiträge zu den Ingenieurwissenschaften, Universitäts-Bibliothek der TU Berlin.
19.
Trostel
,
R.
, 1988, “
Gedanken zur Konstruktion mechanischer Theorien II
,” Forschungsbericht Nr. 7, Universitäts-Bibliothek der TU Berlin.
20.
Silber
,
G.
, 1988, “
Nichtlokal Nichtpolar Oder Lokalpolar mit Kinematischem Zwang?
” Mechanik-Beiträge zur Theorie und Anwendungen, Universitäts-Bibliothek der TU Berlin, pp.
270
284
.
21.
Schlichting
,
H.
, 1958,
Grenzschicht-Theorie
,
G. Braun
,
Karlsruhe
, dritte edition.
22.
Silber
,
G.
, 1986,
Eine Systematik Nichtlokaler Kelvinhafter Fluide vom Grade drei auf der Basis eines Klassischen Kontinuummodelles
, Vol.
18
/No. 26.
VDI-Verlag
,
Düsseldorf
.
23.
Silber
,
G.
, 1990, “
Darstellung Höherstufig-Tensorwertiger Isotroper Funktionen
,”
Z. Angew. Math. Mech.
0044-2267,
70
(
9
), pp.
381
393
.
24.
Alizadeh
,
M.
, 2001, “
Eine Randwertsystematik für Gradientenfluide vom Grade drei auf der Basis von Porositätstensoren
,” Online dissertation, http://edocs.tuberlin.de/diss/2001/alizadeh_mansour.pdfhttp://edocs.tuberlin.de/diss/2001/alizadeh_mansour.pdf; Ph.D. thesis, TU Berlin.
25.
Otten
,
R. H. J. M.
, and
van Ginneken
,
L. P. P. P.
, 1990,
The Annealing Algorithm
, Kluwer.
26.
Piesche
,
M.
, 1983, “
Strömungs-und Wärmetransportvorgänge im Einlaufbereich Eines Ebenen Spaltes mit Relativ Zueinander Bewegten Wänden
,”
Strömungsmechanik und Strömungsmaschinen
,
33
, pp.
1
58
.
27.
Schlichting
,
H.
, 1964,
Grenzschicht-Theorie
,
G. Braun
,
Karlsruhe
, fünfte edition.
28.
Comte-Bellot
,
G.
, 1968, “
Turbulent Flow Between Two Parallel Planes II
,”
Z. Phys.
0044-3328,
209
, pp.
440
444
.
29.
Comte-Bellot
,
G.
, 1965, “
Écoulement Turbulent Entre Deux Parois Parallèles
,”
Publ. Scientifiques et Techniques du Ministère de l’Air
,
419
.
30.
Reichardt
,
H.
, 1951, “
Vollstïdige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen
,”
Z. Angew. Math. Mech.
0044-2267,
31
(
7
), pp.
208
219
.
31.
Alexandru
,
C.
, 1989,
Systematik Nichlokaler Kelvinhafter Fluide vom Grade zwei auf der Basis Eines Cosserat Kontinuummodelles
,
VDI-Verlag
,
Düsseldorf
, Vol.
18
, No. 61.
32.
Reichardt
,
H.
, 1956, “
Über die Geschwindigkeitsverteilung in Einer Geradlinigen Turbulenten Couette-Strömung
,”
Z. Angew. Math. Mech.
0044-2267,
36
, Sonderheft, 1956, pp.
26
29
.
33.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Re=590
,”
Phys. Fluids
1070-6631,
4
, (
11
), pp.
943
945
.
34.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
54
.
You do not currently have access to this content.