Abstract

Doublets of 48-μm-diameter polystyrene latex particles are experimentally tracked in a Poiseuille flow in a capillary tube. The rotational motion of nine doublets is observed using video microscopy with a translating stage. The particle diameter to capillary diameter ratio is 0.17, volume concentration 0.5%, and Reynolds number approximately 0.5. The rotational motions of the “large” particulate doublets are compared with theory originally developed for doublets with particle-to-tube diameters of the order of 0.04; the doublet rotations in the present experiments agree reasonably well with the earlier theory when the shear rate for the large doublet is defined based on the location of the centroid of shear rather than the shear rate at the radial center of mass of the rotating doublet. Additionally, these doublets are readily classified as primary or secondary on the basis of the rotational period.

1.
Nguyen
,
N.-T.
, and
Wereley
,
S.
, 2002,
Fundamentals and Applications of Microfluidics, Microelectromechanical Systems Series
,
Artech House
,
Norwood, MA
.
2.
Stone
,
H.
,
Stroock
,
A.
, and
Ajdari
,
A.
, 2004, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab on-a-Chip
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
881
411
.
3.
Terray
,
A.
,
Oakley
,
J.
, and
Marr
,
W.
, 2002, “
Fabrication of Linear Colloidal Structures for Microfluidic Applications
,”
Appl. Phys. Lett.
0003-6951,
81
(
9
), pp.
1555
1557
.
4.
Jeffrey
,
G.
, 1922, “
The motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London, Ser. A
0950-1207,
102
(
715
), pp.
161
179
.
5.
Van De Ven
,
T.
, and
Mason
,
S.
, 1976, “
The Microrheology of Colloidal Dispersions 4. Pairs of Interacting Spheres in Shear Flow
,”
J. Colloid Interface Sci.
0021-9797,
57
(
3
), pp.
505
516
.
6.
Goldsmith
,
H.
,
Quinn
,
T. A.
,
Drury
,
G.
,
Spanos
,
C.
,
McIntosh
,
F.
, and
Simon
,
S.
, 2001, “
Dynamics of Neutrophil Aggregation in Couette Flow Revealed by Videomicroscopy: Effect of Shear Rate on Two-Body Collision Efficiency and Doublet Lifetime
,”
Biophys. J.
0006-3495,
81
, pp.
2020
2034
.
7.
Long
,
M.
,
Goldsmith
,
H.
,
Tees
,
D.
, and
Zhu
,
C.
, 1999, “
Probabilistic Modeling of Shear-Induced Formation and Breakage of Doublets Cross-Linked by Receptor-Ligand Bonds
,”
Biophys. J.
0006-3495,
76
, pp.
1112
1128
.
8.
Dua
,
A.
, and
Cherayil
,
B.
, 2003, “
Polymer Dynamics in Linear Mixed Flow
,”
J. Chem. Phys.
0021-9606,
119
(
11
), pp.
5696
5700
.
9.
Lee
,
J.
,
Shaqfeh
,
E.
, and
Muller
,
S.
, 2007, “
Dynamics of DNA Tumbling in Shear to Rotational Mixed Flows: Pathways and Periods
,”
Phys. Rev. E
1063-651X,
75
, pp.
040802
.
10.
Ladoux
,
B.
, and
Doyle
,
P.
, 2000, “
Stretching Tethered DNA Chains in Shear Flow
,”
Europhys. Lett.
0295-5075,
52
(
5
), pp.
511
517
.
11.
Van De Ven
,
T.
, and
Mason
,
S.
, 1976, “
The Microrheology of Colloidal Dispersions 5. Primary and Secondary Doublets of Spheres in Shear Flow
,”
J. Colloid Interface Sci.
0021-9797,
57
(
3
), pp.
517
534
.
12.
Goldsmith
,
H.
, and
Mason
,
S.
, 1962, “
The Flow of Suspensions Through Tubes 1. Single Spheres, Rods, and Discs
,”
J. Colloid Sci.
0095-8522,
17
, pp.
448
476
.
13.
Wakiya
,
S.
, 1971, “
Slow Motion in Shear Flow of a Doublet of Two Spheres in Contact
,”
J. Phys. Soc. Jpn.
0031-9015,
31
(
5
), pp.
1581
1587
.
14.
Sheely
,
M.
, 1932, “
Glycerol Viscosity Tables
,”
Ind. Eng. Chem.
0019-7866,
24
, pp.
1060
1064
.
15.
McKeever
,
E.
, 2006, “
Rotational Motion of Doublets in Poiseuille Flow in a Microtube
,” MS thesis, The Pennsylvania State University, Pennsylvania.
16.
Hogg
,
R.
,
Healy
,
T.
, and
Fuerstenau
,
D.
, 1966, “
Mutual Coagulation of Colloidal Dispersions
,”
Trans. Faraday Soc.
0014-7672,
62
, pp.
1638
1651
.
17.
Probstein
,
R.
, 1994,
Physiochemical Hydrodynamics
, 2nd ed.,
Wiley
,
New York
.
18.
O’Brien
,
R.
, and
White
,
L.
, 1978, “
Electrophoretic Mobility of a Spherical Colloidal Particle
,”
J. Chem. Soc., Faraday Trans. 2
0300-9238,
74
, pp.
1607
1626
.
You do not currently have access to this content.