The present work deals with four new alternate transitional surface roughness scales for description of the turbulent boundary layer. The nondimensional roughness scale ϕ is associated with the transitional roughness wall inner variable ζ=Z+ϕ, the roughness friction Reynolds number Rϕ=Rτϕ, and the roughness Reynolds number Reϕ=Reϕ. The two layer theory for turbulent boundary layers in the variables, mentioned above, is presented by method of matched asymptotic expansions for large Reynolds numbers. The matching in the overlap region is carried out by the Izakson–Millikan–Kolmogorov hypothesis, which gives the velocity profiles and skin friction universal log laws, explicitly independent of surface roughness, having the same constants as the smooth wall case. In these alternate variables, just above the wall roughness level, the mean velocity and Reynolds stresses are universal and do not depend on surface roughness. The extensive experimental data provide very good support to our universal relations. There is no universality of scalings in traditional variables and different expressions are needed for inflectional type roughness, monotonic Colebrook–Moody roughness, k-type roughness, d-type roughness, etc. In traditional variables, the velocity profile and skin friction predictions for the inflectional roughness, k-type roughness, and d-type roughness are supported well by the extensive experimental data. The pressure gradient effect from the matching conditions in the overlap region leads to the universal composite laws, which for weaker pressure gradients yields log laws and for strong adverse pressure gradients provides the half-power laws for universal velocity profiles and in traditional variables the additive terms in the two situations depend on the wall roughness.

1.
Millikan
,
C. B.
, 1938, “
A Critical Discussion of Turbulent Flows in Channels and Circular Tubes
,”
Proceedings of Fifth International Congress on Applied Mechanics
,
Cambridge
, 1938,
J. P.
den Hartog
and
H.
Peters
, eds.,
Wiley, New York/Chapman and Hall, London
, pp.
386
392
.
2.
Clauser
,
F. H.
, 1954, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
0095-9812,
21
, pp.
91
108
.
3.
Hama
,
F. R.
, 1954, “
Boundary Layer Characteristics for Smooth and Rough Surface
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
62
, pp.
333
358
.
4.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Shapiro
,
T. A.
, 2005, “
Experimental Support for Townsend’s Reynolds Number Similarity Hypothesis on Rough Walls
,”
Phys. Fluids
1070-6631,
17
, p.
035102
.
5.
Connelly
,
J. S.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2006, “
Velocity-Defect Scaling for Turbulent Boundary Layers With a Range of Relative Roughness
,”
Exp. Fluids
0723-4864,
40
, pp.
188
195
.
6.
Abe
,
K.
,
Matsumoto
,
A.
,
Munakata
,
H.
, and
Tani
,
I.
, 1990, “
Drag Reduction by Sand Grain Roughness
,”
Structure of Turbulence and Drag Reduction
,
A.
Gyr
, ed.,
Springer
,
Berlin
, pp.
341
348
.
7.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
Mc-Graw Hill
,
New York
.
8.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
, 1986, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
162
, pp.
69
98
.
9.
Bandyopadhyay
,
P. R.
, 1987, “
Rough Wall Turbulent Boundary Layer in the Transition Regime
,”
J. Fluid Mech.
0022-1120,
180
, pp.
231
266
.
10.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, 1991, “
Rough-Wall Turbulent Boundary Layer
,”
Adv. Appl. Mech.
0065-2156,
44
, pp.
1
25
.
11.
Patel
,
V. C.
, 1998, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces: Achilles Heel of CFD
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
434
444
.
12.
Piquet
,
J.
, 1999,
Turbulent Flow
,
Springer-Verlag
,
Berlin
.
13.
Jimenez
,
J.
, 2004, “
Turbulent Flow Over Rough Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
173
196
.
14.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2003, “
Direct Numerical Simulation of Turbulent Channel Flow with Transverse Square Bars on One Wall
,”
J. Fluid Mech.
0022-1120,
491
, pp.
229
238
.
15.
Afzal
,
N.
, and
Seena
,
A.
, 2007, “
Alternate Scales for Turbulent Flow in Transitional Rough Pipes: Universal Log Laws
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
80
90
.
16.
Djendi
,
L.
,
Elavarasan
,
R.
, and
Antonia
,
R. A.
, 1999, “
The Turbulent Boundary Layer Over Transverse Square Cavities
,”
J. Fluid Mech.
0022-1120,
395
, pp.
271
294
.
17.
Mochizuki
,
S.
,
Kameda
,
T.
, and
Osaka
,
H.
, 2006, “
Self-Preservation of a Turbulent Boundary Layer Over d-type Roughness
,”
J. Fluid Sci. Technol.
,
1
, pp.
24
35
.
18.
Afzal
,
N.
, 2006, “
Turbulent Boundary Layers on Transitional Rough Surfaces: New Approach to Universal Scaling
,”
36th AIAA Fluid Dynamics Conference Meeting and Exhibit
, Jun. 5–8
San Francisco, Ca
, Paper No. AIAA-2006-2886.
19.
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2007, “
The Rough-wall Turbulent Boundary Layer From the Hydraulically Smooth to the Fully Rough Regime
,”
J. Fluid Mech.
0022-1120,
580
, pp.
381
496
.
20.
Krogstad
,
P-A.
,
Antonia
,
R. A.
, and
Browne
,
L. W. B.
, 1992, “
Comparison Between Rough and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
245
, pp.
599
617
.
21.
Acharya
,
M.
,
Bornstein
,
J.
, and
Escudier
,
M. P.
, 1986, “
Turbulent Boundary Layers on Rough Surfaces
,”
Exp. Fluids
0723-4864,
4
, pp.
33
47
.
22.
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2005, “
Outer Layer Similarity in Fully Rough Wall Turbulent Boundary Layers
,”
Exp. Fluids
0723-4864,
38
, pp.
328
340
.
23.
Colebrook
,
C. F.
, 1939, “
Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
Journal of Institution of Civil Engineers, London
,
11
, pp.
133
156
.
24.
Moody
,
L. F.
, 1944, “
Friction Factors for Pipe Flow
,”
Trans. ASME
0097-6822,
66
, p.
671684
.
25.
Nikuradse
,
J.
, 1933, “
Laws of Flow in Rough Pipe
,” VDI, Forschungsheft N-361, English Translation NACA TM 1292.
26.
Afzal
,
N.
, and
Narasimha
,
R.
, 1976, “
Axisymmetric Turbulent Boundary Layers Along a Circular Cylinder With Constant Pressure
,”
J. Fluid Mech.
0022-1120,
74
, pp.
113
129
.
27.
Afzal
,
N.
, 1996, “
Wake Layer in Turbulent Boundary Layer with Pressure Gradient: A New Approach
,”
Invited Lecture in Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers
,
K.
Gersten
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
95
118
.
28.
Afzal
,
N.
, 2007, “
Power Law Velocity Profile in the Turbulent Boundary Layer on Transitional Rough Surfaces
,”
ASME J. Fluids Eng.
0098-2202,
129
(
8
), pp.
1083
1100
.
29.
Coles
,
D.
, 1956, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
1
, pp.
191
226
.
30.
Cebeci
,
T.
, 2004,
Analysis of Turbulent Flows
,
Elsevier
,
New York
.
31.
Osaka
,
H.
, and
Mochizuki
,
S.
, 1991, “
On Turbulence Structure of the Boundary Layer on d-type Rough Wall
,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
Keffler
Shah
and
Ganic
, eds.,
Elsevier Science
, pp.
412
422
.
32.
Kameda
,
T.
,
Osaka
,
H.
, and
Mochizuki
,
S.
, 1998, “
Mean Flow Quantities for the Turbulent Boundary Layer over a k-type Rough Wall
,”
13 Adust. Fluid Mechanics Conference
,
Monash University
,
Melbourne
, pp.
357
360
.
33.
Antonia
,
R. A.
, and
Krogstad
,
P. A.
, 2001, “
Turbulence Structure in Boundary Layer over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
0169-5983,
28
, pp.
139
157
.
34.
Smalley
,
R. J.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
, 2001, “
Self Preservation of Rough-Wall Turbulent Boundary Layers
,”
Eur. J. Mech. B/Fluids
0997-7546,
20
, pp.
591
602
.
35.
Schultz
,
M. P.
, and
Myers
,
A.
, 2003, “
Comparison of Three Roughness Function Determination Methods
,”
Exp. Fluids
0723-4864,
35
(
4
), pp.
372
379
.
36.
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2003, “
Turbulent Boundary Layers over Surfaces Smoothed by Sanding
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
863
870
.
37.
Rahman
,
S.
, and
Webster
,
D. R.
, 2005, “
The Effects of Bed Roughness on the Scaler Fluctuations of Turbulent Boundary Layer
,”
Exp. Fluids
0723-4864,
38
, pp.
372
384
.
38.
Townsend
,
A. A.
, 1976,
The Structure of Turbulent Shear Flow
. 2nd ed.,
Cambridge University Press
,
Cambridge
.
39.
Stratford
,
B. S.
, 1959, “
The Prediction of Separation of the Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
5
, pp.
1
35
.
40.
Townsend
,
A. A.
, 1960, “
The Development of Turbulent Boundary Layers with Negligible Wall Stress
,”
J. Fluid Mech.
0022-1120,
8
, pp.
143
155
.
41.
Afzal
,
N.
, 1983, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
563
576
.
42.
Kader
,
B. A.
, and
Yaglom
,
A. M.
, 1978, “
Similarity Treatment of Moving Equilibrium Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
0022-1120,
89
, pp.
305
342
.
43.
Afzal
,
N.
, 2008, “
Turbulent Boundary Layer with Negligible Wall Stress
,”
ASME J. Fluids Eng.
0098-2202,
130
, to be published.
You do not currently have access to this content.