Tripping devices are usually installed at the entrance of laboratory-scale pipe test sections to obtain a fully developed turbulent flow sooner. The tripping of laminar flow to induce turbulence can be carried out in different ways, such as using cylindrical wires, sand papers, well-organized tape elements, fences, etc. Claims of tripping effects have been made since the classical experiments of Nikuradse (1932, Gesetzmässigkeit der turbulenten Strömung in glatten Rohren, Forschungsheft 356, Ausgabe B, Vol. 3, VDI-Verlag, Berlin), which covered a significant range of Reynolds numbers. Nikuradse’s data have become the metric by which theories are established and have also been the subject of intense scrutiny. Several subsequent experiments reported friction factors as much as 5% lower than those measured by Nikuradse, and the authors of those reports attributed the difference to tripping effects, e.g., work of Durst et al. (2003, “Investigation of the Mean-Flow Scaling and Tripping Effect on Fully Developed Turbulent Pipe Flow,” J. Hydrodynam., 15(1), pp. 14–22). In the present study, measurements with and without ring tripping devices of different blocking areas of 10%, 20%, 30%, and 40% have been carried out to determine the effect of entrance condition on the developing flow field in pipes. Along with pressure drop measurements to compute the skin friction, both the Pitot tube and hot-wire anemometry measurements have been used to accurately determine the mean velocity profile over the working test section at different Reynolds numbers based on the mean velocity and pipe diameter in the range of 1.0×1054.5×105. The results we obtained suggest that the tripping technique has an insignificant effect on the wall friction factor, in agreement with Nikuradse’s original data.

1.
Dean
,
R. B.
, and
Bradshaw
,
P.
, 1976, “
Measurements of Interacting Turbulent Shear Layers in a Duct
,”
J. Fluid Mech.
0022-1120,
78
, pp.
641
676
.
2.
Durst
,
F.
,
Xie
,
M.
, and
Zhao
,
J.
, 2003, “
Investigation of the Mean-Flow Scaling and Tripping Effect on Fully Developed Turbulent Pipe Flow
,”
J. Hydrodynam.
1001-6058,
15
, (
1
), pp.
14
22
.
3.
George
,
W. K.
, and
Castillo
,
L.
, 1997, “
Zero-Pressure-Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
0003-6900,
50
, pp.
689
729
.
4.
Eggels
,
G. M.
, 1994, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
5.
Kim
,
J.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
6.
Laufer
,
J.
, 1953, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” Report No. NACA TN 2954.
7.
Zanoun
,
E. -S.
, 2003, “
Answers to Some Open Questions in Wall-Bounded Laminar and Turbulent Shear Flows
,” Ph.D. thesis, Technische Fakultät der Universität Erlangen-Nürnberg, Erlangen, Germany.
8.
Afzal
,
N.
, and
Yajnik
,
K. S.
, 1973, “
Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Number
,”
J. Fluid Mech.
0022-1120,
61
, pp.
23
31
.
9.
Afzal
,
N.
, 1982, “
Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer
,”
Ing.-Arch.
0020-1154,
52
, pp.
355
377
.
10.
Wosnik
,
M.
,
Castillo
,
L.
, and
George
,
W. K.
, 2000, “
A Theory for Turbulent Pipe and Channel Flow
,”
J. Fluid Mech.
0022-1120,
421
, pp.
115
145
.
11.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2004, “
Comments on Evaluating the Law of the Wall in Two-Dimensional Fully-Developed Turbulent Channel Flows
,”
Phys. Fluids
1070-6631,
16
, pp.
3507
3508
.
12.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2005, “
New Mixing-Length Approach for the Mean Velocity Profile of Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
393
396
.
13.
Österlund
,
J. M.
,
Johansson
,
A. V.
,
Nagib
,
H. M.
, and
Hites
,
M. H.
, 2000, “
A Note on the Overlap Region in Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
12
, pp.
1
4
.
14.
Nikuradse
,
J.
, 1932,
Gesetzmässigkeit der turbulenten Strömung in glatten Rohren, Forschungsheft 356, Ausgabe B
, Vol.
3
,
VDI-Verlag
,
Berlin
.
15.
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 1998, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
373
, pp.
33
79
.
16.
McKeon
,
B. J.
, and
Smits
,
A. J.
, 2002, “
Static Pressure Correction in High Reynolds Number Fully Developed Turbulent Pipe Flow
,”
Meas. Sci. Technol.
0957-0233,
13
, pp.
1608
1614
.
17.
Morrison
,
J. F.
,
Jiang
,
W.
,
McKeon
,
B. J.
, and
Smits
,
A. J.
, 2002, “
Reynolds-Number Dependence of Streamwise Velocity Statistics in Turbulent Pipe Flow
,” AIAA Paper No. 2002-0574.
18.
Zagarola
,
M. V.
, 1996, “
Mean Flow Scaling in Turbulent Pipe Flow
,” Ph.D. thesis, Princeton University, Princeton, NJ.
19.
Zanoun
,
E. -S.
, and
Durst
,
F.
, 2003, “
Evaluating the Law of the Wall in Two-Dimensional Fully Developed Turbulent Channel Flows
,”
Phys. Fluids
1070-6631,
15
(
10
), pp.
3079
3089
.
20.
Loehrke
,
K. I.
, and
Nagib
,
H. M.
, 1972, “
Experiments on Management of Free-Stream Turbulence
,” IIT Chicago, Illinois 60616, Sept., AGARD Report No. 598.
21.
Durst
,
F.
,
Fisher
,
M.
,
Jovanovic
,
J.
, and
Kikura
,
H.
, 1998, “
Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
496
503
.
22.
Darbyshire
,
A. G.
, 1995, “
Transition to Turbulent in Constant-Mass-Flux Pipe Flow
,”
J. Fluid Mech.
0022-1120,
289
, pp.
83
114
.
23.
Fischer
,
M.
, 1999, “
Turbulente wandgebundene Strömungen bei kleinen Reynoldszahlen
,” Ph.D. thesis, Universität Erlangen Nürnberg, Erlangen, Germany.
24.
Patel
,
R. P.
, 1974, “
A Note on Fully Developed Turbulent Flow Down a Circular Pipe
,”
Aeronaut. J.
0001-9240,
78
, pp.
93
97
.
25.
Patel
,
V. C.
, and
Head
,
M. R.
, 1969, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
38
, pp.
181
201
.
26.
Bearman
,
P. W.
, 1971, “
Corrections for the Effect of Ambient Temperature Drift on Hot-Wire Measurements in Incompressible Flow
,” pp.
25
30
, Dansk Industri Syndikat Aktieselskab Information Report No. 11.
27.
Bremhorst
,
K.
, 1985, “
Effect of Fluid Temperature on Hot-Wire Anemometers and an Improved Method of Temperature Compensation and Linearization Without Use of Small Signal Sensitivities
,”
J. Phys. E
0022-3735,
18
, pp.
44
49
.
28.
Crowell
,
G. B.
, Jr.
,
Daniel
,
H. W.
, and
Henery
,
D. B.
, 1988, “
Comparison of Temperature Correction Methods for Hot Wire Anemometers
,”
Trans. ASAE
0001-2351,
31
(
5
), pp.
1552
1555
.
29.
Bhatia
,
J. C.
,
Durst
,
F.
, and
Jovanovic
,
J.
, 1982, “
Corrections of Hot-Wire Measurements Near Walls
,”
J. Fluid Mech.
0022-1120,
122
, pp.
411
431
.
30.
Durst
,
F.
,
Zanoun
,
E. -S.
, and
Pashtrapanska
,
M.
, 2001, “
In Situ Calibration of Hot Wires Close to Highly Heat-Conducting Walls
,”
Exp. Fluids
0723-4864,
31
, pp.
103
110
.
31.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
, 1987, “
Spatial Resolution and Measurement of Turbulence in the Viscous Sublayer Using Subminiature Hot-Wire Probes
,”
Exp. Fluids
0723-4864,
5
, pp.
407
417
.
32.
Chue
,
S. H.
, 1975, “
Pressure Probes for Fluid Measurements
,”
Prog. Aerosp. Sci.
0376-0421,
16
(
2
), pp.
147
223
.
33.
Winter
,
K. G.
, 1979, “
An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers
,”
Prog. Aerosp. Sci.
0376-0421,
18
, pp.
1
57
.
34.
Fernholz
,
H. H.
,
Janke
,
G.
,
Schober
,
M.
,
Wagner
,
P. M.
, and
Warnack
,
D.
, 1996, “
New Development and Applications of Skin-Friction Measuring Technique
,”
Meas. Sci. Technol.
0957-0233,
7
, pp.
1396
1409
.
35.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.