The past two decades (approximately 1990 to 2010) have witnessed an ever-quickening pace of new findings pertaining to the Reynolds number dependencies, scaling, and dynamics of turbulent boundary layer flows (and wall-bounded turbulent flows in general). Given this, an important objective of the present effort is to provide a review that enables researchers new to the field (e.g., graduate students) to gain an appreciation for, and an understanding of, the prevalent research themes currently under investigation. Thus, the emphasis is more on laying a contextual foundation rather than, for example, comprehensively reporting all of the research findings of the past 20 years. The review begins with a brief exposition of scaling concepts and the normalizing parameters used in exploring Reynolds number dependence. An overall focus of the effort is to describe the scaling problem in relation to the underlying behaviors of the governing transport equations. For this reason, a number of relevant equations are concisely presented. The technical challenges associated with reliably exploring Reynolds number dependence are nontrivial and are of central importance. Thus, a separate section is devoted to this topic. Similarly, since they factor importantly relative to understanding and organizing the data trends, the attributes, strengths, and weaknesses of the various theoretical approaches and models (both physical and mathematical) are briefly reviewed. The statistical data presented primarily focus on means and variances since these quantities most directly relate to the time-averaged equations. Recent results pertaining to the spatial structure of turbulent boundary layers provide a useful context for describing instantaneous dynamics, often involving coherent vortical motions and including the so-called inner/outer interaction. Overall, the cumulative evidence increasingly supports a paradigm in which the scaling behaviors of the statistical profiles stem from the existence of an internal hierarchy of motions that approach a dynamically self-similar state as the Reynolds number becomes large.

1.
Gad-el-Hak
,
M.
, and
Bandyopadhyay
,
P.
, 1994, “
Reynolds Number Effects in Wall-Bounded Turbulent Flows
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
307
365
.
2.
Fernholz
,
H.
, and
Finley
,
J.
, 1996, “
The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
245
311
.
3.
Robinson
,
S.
, 1991, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
601
639
.
4.
Panton
,
R.
, 1997,
Self-Sustaining Mechanisms of Wall Turbulence
,
Computational Mechanics
,
Southampton, UK
.
5.
Panton
,
R.
, 2005, “
Review of Wall Turbulence Described by Composite Expansions
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
1
36
.
6.
Buschmann
,
M.
, and
Gad-el-Hak
,
M.
, 2006, “
Recent Developments in Scaling of Wall-Bounded Flows
,”
Prog. Aerosp. Sci.
0376-0421,
42
, pp.
419
467
.
7.
Adrian
,
R.
, 2007, “
Hairpin Vortex Organization in Wall Turbulence
,”
Phys. Fluids
1070-6631,
19
, p.
041301
.
8.
McKeon
,
B.
, 2007, “
Scaling and Structure in High Reynolds Number Wall-Bounded Flows
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, p.
1852
.
9.
Marusic
,
I.
,
McKeon
,
B.
,
Monkewitz
,
P.
,
Nagib
,
H.
,
Smits
,
A.
, and
Sreenivasan
,
K.
, 2010, “
Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues
,”
Phys. Fluids
1070-6631,
22
, p.
065103
.
10.
Smits
,
A.
,
McKeon
,
B.
, and
Marusic
,
I.
, “
High Reynolds Number Wall Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189, to be published.
11.
Prandtl
,
L.
, 1905, “
Uber flussigkeitsbewegungen bei sehr kleiner reibung
,”
Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904
,
A.
Krazer
, ed.,
Teubner
,
Leipzig
, pp.
484
491
.
12.
Shivamoggi
,
B.
, 2003,
Perturbation Methods for Differential Equations
,
Birkhauser
,
Boston
.
13.
Wu
,
J. -Z.
,
Ma
,
H. -Y.
, and
Zhou
,
M. -D.
, 2006,
Vorticity and Vortex Dynamics
,
Springer-Verlag
,
Berlin
.
14.
Lagerstrom
,
P.
, 1988,
Matched Asymptotic Expansions: Ideas and Techniques
,
Springer-Verlag
,
Berlin
.
15.
Pope
,
S.
, 2000,
Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
16.
Van Dyke
,
M.
, 1982,
An Album of Fluid Motion
,
Parabolic
,
Stanford, CA
.
17.
Garratt
,
J.
, 1992,
The Atmospheric Boundary Layer
,
Cambridge University Press
,
Cambridge, UK
.
18.
Tennekes
,
H.
, and
Lumley
,
J.
, 1972,
A First Course in Turbulence
,
MIT
,
Cambridge, MA
.
19.
Evans
,
H.
, 1968,
Laminar Boundary-Layer Theory
,
Addison-Wesley
,
New York
.
20.
Afzal
,
N.
, 1982, “
Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer
,”
Ing.-Arch.
0020-1154,
52
, pp.
355
377
.
21.
Sreenivasan
,
K.
, and
Sahay
,
A.
, 1997, “
The Persistence of Viscous Effects in the Overlap Region and the Mean Velocity in Turbulent Pipe and Channel Flows
,”
Self-Sustaining Mechanisms of Wall Turbulence
,
R.
Panton
, ed.,
Computational Mechanics
,
Southampton, UK
, pp.
253
272
.
22.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Properties of the Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
522
, pp.
303
327
.
23.
Lighthill
,
M.
, 1963, “
Introduction. Boundary Layer Theory
,”
Laminar Boundary Layers
,
L.
Rosenhead
, ed.,
Oxford University Press
,
Oxford, UK
, Chap. II.
24.
Sherman
,
F.
, 1990,
Viscous Flows
,
McGraw-Hill
,
New York
.
25.
Hansen
,
A.
, 1964,
Similarity Analyses of Boundary Value Problems in Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Cantwell
,
B.
, 2002,
Introduction to Symmetry Analysis
,
Cambridge University Press
,
Cambridge, UK
.
27.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
,
Springer-Verlag
,
Berlin
.
28.
Gill
,
A.
, 1968, “
The Reynolds Number Similarity Argument
,”
J. Math. Phys.
0022-2488,
47
, pp.
437
441
.
29.
Afzal
,
N.
, and
Yajnik
,
K.
, 1973, “
Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
61
, pp.
23
31
.
30.
Barenblatt
,
G.
, 1993, “
Scaling Laws for Fully Developed Turbulent Shear Flows. Part 1: Basic Hypotheses and Analysis
,”
J. Fluid Mech.
0022-1120,
248
, pp.
513
520
.
31.
Fife
,
P.
,
Wei
,
T.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Stress Gradient Balance Layers and Scale Hierarchies in Wall-Bounded Turbulence
,”
J. Fluid Mech.
0022-1120,
532
, pp.
165
189
.
32.
Fife
,
P.
,
Klewicki
,
J.
,
McMurtry
,
P.
, and
Wei
,
T.
, 2005, “
Scaling in the Presence of Indeterminacy: Wall-Induced Turbulence
,”
Multiscale Model. Simul.
1540-3459,
4
, pp.
936
959
.
33.
Monkewitz
,
P.
,
Chauhan
,
K.
, and
Nagib
,
H.
, 2007, “
Self-Consistent High-Reynolds Number Asymptotics for Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
19
, p.
115101
.
34.
Fox
,
R.
,
McDonald
,
A.
, and
Pritchard
,
P.
, 2004,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
35.
Zagarola
,
M.
, and
Smits
,
A.
, 1998, “
Mean Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
373
, pp.
33
79
.
36.
Zagarola
,
M.
, and
Smits
,
A.
, 1998, “
A New Mean Velocity Scaling of Turbulent Boundary Layers
,” Paper No. ASME-FEDSM-4950.
37.
Connelly
,
J. S.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2006, “
Velocity-Defect Scaling for Turbulent Boundary Layers With a Range of Relative Roughness
,”
Exp. Fluids
0723-4864,
40
, pp.
188
195
.
38.
Castillo
,
L.
, and
George
,
W.
, 2001, “
Similarity Analysis for Turbulent Boundary Layers With Pressure Gradient: Outer Flow
,”
AIAA J.
0001-1452,
39
, pp.
41
47
.
39.
Brzek
,
B.
,
Torres-Nieves
,
S.
,
Lebron
,
J.
,
Cal
,
R.
,
Meneveau
,
C.
, and
Castillo
,
L.
, 2009, “
Effects of Free-Stream Turbulence on Rough Surface Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
635
, pp.
207
243
.
40.
Winter
,
K.
, 1979, “
An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers
,”
Prog. Aerosp. Sci.
0376-0421,
18
, pp.
1
57
.
41.
Haritonidis
,
J.
, 1989, “
The Measurement of Wall Shear Stress
,”
Advances in Fluid Mechanics
,
M.
Gad-el-Hak
, ed.,
Springer-Verlag
,
Berlin
, pp.
229
261
.
42.
Hutchins
,
N.
, and
Choi
,
K. -S.
, 2002, “
Accurate Measurements of Local Skin Friction Coefficient Using Hot-Wire Anemometry
,”
Prog. Aerosp. Sci.
0376-0421,
38
, pp.
421
446
.
43.
Klewicki
,
J.
, 2007, “
Wall-Bounded Flows, Section 12.2, Measurement of Wall Shear Stress
,”
Spring Handbook of Experimental Fluid Mechanics
,
J. F. C.
Tropea
and
A.
Yarin
, eds.,
Springer-Verlag
,
Berlin
, pp.
875
886
.
44.
Clauser
,
F.
, 1954, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
0095-9812,
21
, pp.
91
108
.
45.
Allen
,
J.
, 1977, “
Experimental Study of Error Sources in Skin Friction Balance Measurements
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
197
204
.
46.
Monty
,
J.
, 2005, “
Developments in Smooth Wall Turbulent Duct Flows
,” Ph.D. thesis, University of Melbourne, Melbourne, VIC.
47.
Nagib
,
H.
,
Chauhan
,
K.
, and
Monkewitz
,
P.
, 2007, “
Approach to an Asymptotic State for Zero Pressure Gradient Turbulent Boundary Layers
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
755
770
.
48.
Nagib
,
H.
,
Christophorou
,
C.
, and
Monkewitz
,
P.
, 2004, “
High Reynolds Number Turbulent Boundary Layers Subjected to Various Pressure-Gradient Conditions
,”
IUTAM 2004: One Hundred Years of Boundary Layer Research
, Gottingen, Germany, Aug. 12–14.
49.
Nagib
,
H.
,
Chauhan
,
K.
, and
Monkewitz
,
P.
, 2005, “
Scaling of the High Reynolds Number Turbulent Boundary Layer Revisited
,” AIAA Paper No. 2005-4810.
50.
Nagib
,
H.
, and
Chauhan
,
K.
, 2008, “
Variation of von Karman Coefficient in Canonical Flows
,”
Phys. Fluids
1070-6631,
20
, p.
101518
.
51.
Monkewitz
,
P.
,
Chauhan
,
K.
, and
Nagib
,
H.
, 2008, “
Comparison of Mean Flow Similarity Laws in Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
20
, p.
105102
.
52.
Davidson
,
P.
, 2004,
Turbulence: An Introduction for Scientists and Engineers
,
Oxford University Press
,
Oxford
.
53.
Sahay
,
A.
, 1997, “
The Mean Velocity and Reynolds Shear Stress in Turbulent Channel and Pipe Flow
,” Ph.D. thesis, Yale University, New Haven, CT.
54.
Hoyas
,
S.
, and
Jimenez
,
J.
, 2008, “
Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels
,”
Phys. Fluids
1070-6631,
20
, p.
101511
.
55.
Lele
,
S.
, 1992, “
Vorticity Form of Turbulence Transport Equations
,”
Phys. Fluids A
0899-8213,
4
, pp.
1767
1772
.
56.
Wu
,
J. -Z.
, and
Wu
,
J. -M.
, 1993, “
Interactions Between a Solid Surface and a Viscous Compressible Flow Field
,”
J. Fluid Mech.
0022-1120,
254
, pp.
183
211
.
57.
Balint
,
J. -L.
,
Wallace
,
J.
, and
Vukoslavcevic
,
P.
, 1991, “
The Velocity and Vorticity Vector Fields of a Turbulent Boundary Layer. Part 2. Statistical Properties
,”
J. Fluid Mech.
0022-1120,
228
, pp.
53
86
.
58.
Honkan
,
A.
, and
Andreopoulos
,
Y.
, 1997, “
Vorticity, Strainrate, and Dissipation Characteristics in the Near-Wall Region of Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
350
, pp.
29
96
.
59.
Hinze
,
J.
, 1975,
Turbulence
,
McGraw-Hill
,
New York
.
60.
Eyink
,
G.
, 2008, “
Turbulent Flow in Pipes and Channels as Cross-Stream ‘Inverse Cascades’ of Vorticity
,”
Phys. Fluids
1070-6631,
20
, p.
125101
.
61.
Klewicki
,
J.
, 1989, “
Velocity-Vorticity Correlations Related to the Gradients of the Reynolds Stress in Parallel Turbulent Wall Flows
,”
Phys. Fluids A
0899-8213,
1
, pp.
1285
1289
.
62.
Townsend
,
A.
, 1961, “
Equilibrium Layers and Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
11
, pp.
97
120
.
63.
Hamman
,
C.
,
Klewicki
,
J.
, and
Kirby
,
M.
, 2008, “
On the Lamb Vector Divergence in Navier–Stokes Flows
,”
J. Fluid Mech.
0022-1120,
610
, pp.
261
284
.
64.
Kim
,
J.
, 1989, “
On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
205
, pp.
421
451
.
65.
Bradshaw
,
P.
, and
Koh
,
Y.
, 1981, “
A Note on Poisson’s Equation for Pressure in a Turbulent Flow
,”
Phys. Fluids
1070-6631,
24
, p.
777
.
66.
Tsuji
,
Y.
,
Fransson
,
J.
,
Alfredsson
,
P.
, and
Johansson
,
A.
, 2007, “
Pressure Statistics and Their Scaling in High-Reynolds-Number Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
585
, pp.
1
40
.
67.
2007,
Springer Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A.
Yarin
, and
J. F.
Foss
, eds.,
Springer-Verlag
,
Berlin
.
68.
Wyngaard
,
J.
, 1969, “
Spatial Resolution of the Vorticity Meter and Other Hot-Wire Arrays
,”
J. Phys. E: J. Sci. Instrum.
0950-1290,
2
, pp.
983
987
.
69.
Johansson
,
A.
, and
Alfredsson
,
P.
, 1983, “
Effects of Imperfect Spatial Resolution on Measurements of Wall-Bounded Turbulent Shear Flows
,”
J. Fluid Mech.
0022-1120,
137
, pp.
409
421
.
70.
Ligrani
,
P.
, and
Bradshaw
,
P.
, 1987, “
Spatial Resolution and Measurement of Turbulence in the Viscous Sublayer Using Subminiature Hot-Wire Probes
,”
Exp. Fluids
0723-4864,
5
, pp.
407
417
.
71.
Park
,
S.
, and
Wallace
,
J.
, 1993, “
The Influence of Instantaneous Velocity Gradients on Turbulence Properties Measured With Multi-Sensor Hot-Wire Probes
,”
Exp. Fluids
0723-4864,
16
, pp.
17
26
.
72.
Klewicki
,
J.
, and
Falco
,
R.
, 1990, “
On Accurately Measuring Statistics Associated With Small Scale Structure in Turbulent Boundary Layers Using Hot-Wire Probes
,”
J. Fluid Mech.
0022-1120,
219
, pp.
119
142
.
73.
Antonia
,
R.
,
Zhu
,
Y.
, and
Kim
,
J.
, 1993, “
On the Measurement of Lateral Velocity Derivatives in Turbulent Flows
,”
Exp. Fluids
0723-4864,
15
, pp.
65
69
.
74.
De Graaff
,
D.
, and
Eaton
,
J.
, 2000, “
Reynolds Number Scaling of the Flat Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
319
346
.
75.
Hutchins
,
N.
, and
Marusic
,
I.
, 2007, “
Large Scale Influences in Near-Wall Turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
647
664
.
76.
Wallace
,
J.
, and
Foss
,
J.
, 1995, “
The Measurement of Vorticity in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
27
, pp.
469
514
.
77.
Metzger
,
M.
, and
Klewicki
,
J.
, 2001, “
A Comparative Study of Wall Region Structure in High and Low Reynolds Number Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
13
, pp.
692
701
.
78.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
, 2009, “
Large-Scale Amplitude Modulation of the Small-Scale Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
628
, pp.
311
337
.
79.
Hutchins
,
N.
,
Nickels
,
T.
,
Marusic
,
I.
, and
Chong
,
M.
, 2009, “
Hot-Wire Spatial Resolution Issue in Wall-Bounded Turbulence
,”
J. Fluid Mech.
0022-1120,
635
, pp.
103
136
.
80.
Morris
,
S.
, and
Foss
,
J.
, 2005, “
Vorticity Spectra in High Reynolds Number Anisotropic Turbulence
,”
Phys. Fluids
1070-6631,
17
, p.
088102
.
81.
Folz
,
A.
, 1997, “
An Experimental Study of the Near-Surface Turbulence in the Atmospheric Boundary Layer
,” Ph.D. thesis, University of Maryland, College Park, MD.
82.
Folz
,
A.
, and
Wallace
,
J.
, 2010, “
Near-Surface Turbulence in the Atmospheric Boundary Layer
,”
Physica D: Nonlinear Phenomena
0167-2789,
239
, pp.
1305
1317
.
83.
Schewe
,
G.
, 1983, “
On the Structure and Resolution of Wall-Pressure Fluctuations Associated With Turbulent Boundary Layer Flow
,”
J. Fluid Mech.
0022-1120,
134
, pp.
311
328
.
84.
Lueptow
,
R.
, 1995, “
Transducer Resolution and the Turbulent Wall Pressure Spectrum
,”
J. Acoust. Soc. Am.
0001-4966,
97
, pp.
370
378
.
85.
Gravante
,
S.
,
Naguib
,
A.
,
Work
,
C.
, and
Nagib
,
H.
, 1998, “
Characterization of the Pressure Fluctuations Under a Fully Developed Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
36
, pp.
1808
1816
.
86.
Klewicki
,
J.
,
Priyadarshana
,
P.
, and
Metzger
,
M.
, 2008, “
Statistical Structure of the Fluctuating Wall-Pressure and Its In-Plane Gradients at High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
609
, pp.
195
220
.
87.
Andreopoulos
,
Y.
, and
Agui
,
J.
, 1996, “
Wall-Vorticity Flux Dynamics in a Two-Dimensional Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
309
, pp.
45
84
.
88.
Sheng
,
J.
,
Malkiel
,
E.
, and
Katz
,
J.
, 2009, “
Buffer Layer Structures Associated With Extreme Wall Stress Events in a Smooth Wall Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
633
, pp.
17
60
.
89.
Marusic
,
I.
, and
Kunkel
,
G.
, 2003, “
Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers
,”
Phys. Fluids
1070-6631,
15
, pp.
2461
2464
.
90.
Hoyas
,
S.
, and
Jimenez
,
J.
, 2006, “
Scaling the Velocity Fluctuations in Turbulent Channels up to Reτ=2003
,”
Phys. Fluids
1070-6631,
18
, p.
011702
.
91.
Hites
,
M.
, 1997, “
Scaling of High Reynolds Number Turbulent Boundary Layers in the National Diagnostic Facility
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
92.
Osterlund
,
J.
, 1999, “
Experimental Studies of the Zero Pressure Gradient Turbulent Boundary Layer
,” Ph.D. thesis, Stockholm Royal Institute of Technology, Stockholm.
93.
Elbing
,
B.
,
Winkel
,
E.
,
Lay
,
K.
,
Ceccio
,
S.
,
Dowling
,
D.
, and
Perlin
,
M.
, 2008, “
Bubble-Induced Skin-Friction Drag Reduction and the Abrupt Transition to Air-Layer Drag Reduction
,”
J. Fluid Mech.
0022-1120,
612
, pp.
201
236
.
94.
Winkel
,
E.
,
Oweis
,
G.
,
Vanapalli
,
S.
,
Dowling
,
D.
,
Perlin
,
M.
,
Solomon
,
M.
, and
Ceccio
,
S.
, 2009, “
High-Reynolds-Number Turbulent Boundary Layer Friction Drag Reduction From Wall-Injected Polymer Solutions
,”
J. Fluid Mech.
0022-1120,
621
, pp.
259
288
.
95.
Swanson
,
C.
,
Julian
,
B.
,
Ihas
,
G.
, and
Donnelly
,
R.
, 2002, “
Pipe Flow Measurements Over a Wide Range of Reynolds Numbers Using Liquid Helium and Various Gases
,”
J. Fluid Mech.
0022-1120,
461
, pp.
51
60
.
96.
Barenblatt
,
G.
, and
Chorin
,
A.
, 1998, “
New Perspectives in Turbulence: Scaling Laws, Asymptotics and Intermittency
,”
SIAM Rev.
0036-1445,
40
, pp.
265
291
.
97.
McKeon
,
B.
, 2003, “
High Reynolds Number Turbulent Pipe Flow
,” Ph.D. thesis, Princeton University, Princeton, NJ.
98.
Wosnik
,
M.
,
Castillo
,
L.
, and
George
,
W.
, 2000, “
A Theory for Turbulent Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
421
, pp.
115
145
.
99.
Kunkel
,
G.
,
Arnold
,
C.
, and
Smits
,
A.
, 2006, “
Development of NSTAP: A Nanoscale Thermal Anemometry Probe
,”
Proceedings of the 36th AIAA Fluid Dynamics Conference
.
100.
Bailey
,
S.
,
Kunkel
,
G.
,
Hultmark
,
M.
,
Vallikivi
,
M.
,
Hill
,
J.
,
Meyer
,
K.
,
Tsay
,
C.
,
Arnold
,
C.
, and
Smits
,
A.
, “
Turbulence Measurements Using a Nanoscale Thermal Anemometry Probe
,”
J. Fluid Mech.
0022-1120, to be published.
101.
Andreas
,
E.
,
Claffey
,
K.
,
Jordan
,
R.
,
Fairal
,
C.
,
Guest
,
P.
,
Persson
,
P.
, and
Grachev
,
A.
, 2006, “
Evaluations of the von Karman Constant in the Atmospheric Surface Layer
,”
J. Fluid Mech.
0022-1120,
559
, pp.
117
149
.
102.
Klewicki
,
J.
,
Foss
,
J.
, and
Wallace
,
J.
, 1998, “
High Reynolds Number [Rθ=O(106)] Boundary Layer Turbulence in the Atmospheric Surface Layer Above Utah’s West Desert
,”
Flow at Ultrahigh Reynolds and Rayleigh Numbers: A Status Report
,
R.
Donnelly
and
K.
Sreenivasan
, eds.,
Springer-Verlag
,
New York
, pp.
450
466
.
103.
Metzger
,
M.
,
McKeon
,
B.
, and
Holmes
,
H.
, 2007, “
The Near-Neutral Atmospheric Surface Layer: Turbulence and Non-Stationarity
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
859
876
.
104.
Carlier
,
J.
, and
Stanislas
,
M.
, 2005, “
Experimental Study of Eddy Structures in a Turbulent Boundary Layer Using Particle Image Velocimetry
,”
J. Fluid Mech.
0022-1120,
535
, pp.
143
188
.
105.
Stanislas
,
M.
,
Perret
,
L.
, and
Foucaut
,
J. -M.
, 2008, “
Vortical Structures in the Turbulent Boundary Layer: A Possible Route to a Universal Representation
,”
J. Fluid Mech.
0022-1120,
602
, pp.
327
382
.
106.
Talamelli
,
A.
,
Persiani
,
F.
,
Fransson
,
J.
,
Alfredsson
,
P.
,
Johansson
,
A.
,
Nagib
,
H.
,
Ruedi
,
J.
,
Sreenivasan
,
K.
, and
Monkewitz
,
P.
, 2009, “
CICLoPE: A Response to the Need for High Reynolds Number Experiments
,”
Fluid Dyn. Res.
0169-5983,
41
, p.
021407
.
107.
Prandtl
,
L.
, 1925, “
Bericht uber die Entstehung der Turbulenz
,”
Z. Angew. Math. Mech.
0044-2267,
5
, pp.
136
139
.
108.
Von Kármán
,
Th.
, 1930, “
Mechanische Ähnlichkeit und Turbulenz
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
0369-6650,
1
, pp.
58
76
.
109.
Townsend
,
A.
, 1976,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
Cambridge, UK
.
110.
Perry
,
A.
, and
Chong
,
M.
, 1982, “
On the Mechanism of Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
119
, pp.
173
217
.
111.
Perry
,
A.
, and
Marusic
,
I.
, 1995, “
A Wall-Wake Model for the Turbulence Structure of Boundary Layers. Part 1. Extension of the Attached Eddy Hypothesis
,”
J. Fluid Mech.
0022-1120,
298
, pp.
361
388
.
112.
Oberlack
,
M.
, 2001, “
A Unified Approach for Symmetries in Plane Parallel Turbulent Shear Flows
,”
J. Fluid Mech.
0022-1120,
427
, pp.
299
328
.
113.
Fife
,
P.
,
Klewicki
,
J.
, and
Wei
,
T.
, 2009, “
Time Averaging in Turbulence Settings May Reveal an Infinite Hierarchy of Length Scales
,”
Discrete Contin. Dyn. Syst.
1078-0947,
24
, pp.
781
807
.
114.
Marusic
,
I.
, 2001, “
On the Role of Large-Scale Structures in Wall-Turbulence
,”
Phys. Fluids
1070-6631,
13
, pp.
735
743
.
115.
Nickels
,
T.
,
Marusic
,
I.
,
Hafez
,
S.
,
Hutchins
,
N.
, and
Chong
,
M.
, 2007, “
Some Predictions of the Attached Eddy Model for a High Reynolds Number Boundary Layer
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
807
822
.
116.
Marušic
,
I.
, and
Perry
,
A. E.
, 1995, “
A Wall-Wake Model for the Turbulence Structure of Boundary Layers. Part 2. Further Experimental Support
,”
J. Fluid Mech.
0022-1120,
298
, pp.
389
407
.
117.
Adrian
,
R.
,
Meinhart
,
C.
, and
Tomkins
,
C.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
54
.
118.
Ganapathisubramani
,
B.
,
Longmire
,
E.
, and
Marusic
,
I.
, 2003, “
Characteristics of Vortex Packets in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
487
, pp.
35
46
.
119.
George
,
W.
, and
Castillo
,
L.
, 1997, “
Zero Pressure Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
0003-6900,
50
, pp.
689
729
.
120.
Jones
,
M.
,
Nickels
,
T.
, and
Marusic
,
I.
, 2008, “
On the Asymptotic Similarity of the Zero-Pressure Gradient Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
616
, pp.
195
203
.
121.
Barenblatt
,
G.
, 1996,
Scaling, Self-Similarity, and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
122.
Barenblatt
,
G.
,
Chorin
,
A.
, and
Prostokishin
,
V.
, 2000, “
Self-Similar Intermediate Structures in Turbulent Boundary Layers at Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
410
, pp.
263
283
.
123.
Barenblatt
,
G. I.
, and
Chorin
,
A. J.
, 2004, “
A Mathematical Model for the Scaling of Turbulence
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
15023
15026
.
124.
Chorin
,
A.
, 1994,
Vorticity and Turbulence
,
Springer
,
Berlin
.
125.
George
,
W.
, 2007, “
Is There a Universal Log Law for Turbulent Flows?
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
789
806
.
126.
Izakson
,
A.
, 1937, “
On the Formula for the Velocity Distribution Near Walls
,”
Tech. Phys. USSR IV
,
2
, pp.
155
162
.
127.
Millikan
,
C.
, 1939, “
A Critical Discussion of Turbulent Flows in Channels and Circular Tubes
,”
Proceedings of the Fifth International Congress of Applied Mechanics
,
J. D.
Hartog
and
H.
Peters
, eds.,
Wiley
,
New York
, pp.
5772
5776
.
128.
Yajnik
,
K.
, 1970, “
Asymptotic Theory of Turbulent Shear Flows
,”
J. Fluid Mech.
0022-1120,
42
, pp.
411
427
.
129.
Afzal
,
N.
, 2001, “
Power Law and Log Law Velocity Profiles in Fully Developed Turbulent Boundary Layer Flow: Equivalent Relations at Large Reynolds Number
,”
Acta Mech.
0001-5970,
151
, pp.
171
183
.
130.
Seena
,
A.
, and
Afzal
,
N.
, 2008, “
Intermediate Scaling of Turbulent Momentum and Heat Transfer in a Transitional Rough Channel
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
031701
.
131.
Walker
,
J.
, 1998, “
Turbulent Boundary Layers II: Further Developments
,”
Recent Advances in Boundary Layer Theory
(
CISM Courses and Lectures
),
A.
Kluwick
, ed.,
Springer-Verlag
,
Vienna
, Vol.
390
, pp.
145
230
.
132.
Stephani
,
H.
, 1989,
Differential Equations: Their Solution Using Symmetries
,
Cambridge University Press
,
Cambridge, UK
.
133.
Morgan
,
A.
, 1952, “
The Reduction by One of the Number of Independent Variables in Some Systems of Partial Differential Equations
,”
Q. J. Math.
0033-5606,
3
, pp.
250
259
.
134.
Oberlack
,
M.
, 1999, “
Similarity in Non-Rotating and Rotating Turbulent Pipe Flows
,”
J. Fluid Mech.
0022-1120,
379
, pp.
1
22
.
135.
Oberlack
,
M.
,
Cabot
,
W.
,
Reif
,
B. P.
, and
Weller
,
T.
, 2006, “
Group Analysis, Direct Numerical Simulation and Modelling of a Turbulent Channel Flow With Streamwise Rotation
,”
J. Fluid Mech.
0022-1120,
562
, pp.
383
403
.
136.
Lindgren
,
B.
,
Osterlund
,
J.
, and
Johansson
,
A.
, 2004, “
Evaluation of Scaling Laws Derived From Lie Group Symmetry Methods in Zero-Pressure-Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
502
, pp.
127
152
.
137.
Klewicki
,
J.
,
Fife
,
P.
,
Wei
,
T.
, and
McMurtry
,
P.
, 2006, “
Overview of a Methodology for Scaling the Indeterminate Equations of Wall-Turbulence
,”
AIAA J.
0001-1452,
44
, pp.
2475
2481
.
138.
Wei
,
T.
,
McMurtry
,
P.
,
Klewicki
,
J.
, and
Fife
,
P.
, 2005, “
Meso-Scaling the Reynolds Shear Stress in Turbulent Channel and Pipe Flows
,”
AIAA J.
0001-1452,
43
, pp.
2350
2353
.
139.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Scaling Heat Transfer in Fully Developed Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5284
5296
.
140.
Wei
,
T.
,
Fife
,
P.
, and
Klewicki
,
J.
, 2007, “
On Scaling the Mean Momentum Balance and Its Solutions in Turbulent Couette-Poiseuille Flow
,”
J. Fluid Mech.
0022-1120,
573
, pp.
371
398
.
141.
Metzger
,
M.
,
Lyons
,
A.
, and
Fife
,
P.
, 2008, “
Mean Momentum Balance in Moderately Favourable Pressure Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
617
, pp.
107
140
.
142.
Klewicki
,
J.
,
Fife
,
P.
, and
Wei
,
T.
, 2009, “
On the Logarithmic Mean Profile
,”
J. Fluid Mech.
0022-1120,
638
, pp.
73
93
.
143.
Klewicki
,
J.
,
Fife
,
P.
,
Wei
,
T.
, and
McMurtry
,
P.
, 2007, “
A Physical Model of the Turbulent Boundary Layer Consonant With Mean Momentum Balance Structure
,”
Proc. R. Soc. London, Ser. A
0950-1207,
365
, pp.
823
839
.
144.
Kline
,
S.
, and
Robinson
,
S.
, 1990, “
Quasi-Coherent Structures in the Turbulent Boundary Layer: Part 1. Status Report on a Community-Wide Summary of the Data
,”
Near-Wall Turbulence: 1988 Zoran Zaric Memorial Conference
,
S.
Kline
and
N.
Afgan
, eds.,
Hemisphere
,
New York
, pp.
200
247
.
145.
Jiménez
,
J.
, and
Moin
,
P.
, 1991, “
The Minimal Flow Unit in Near Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
225
, pp.
213
240
.
146.
Jiménez
,
J.
, 1994, “
On the Structure and Control of Near Wall Turbulence
,”
Phys. Fluids
1070-6631,
6
, pp.
944
953
.
147.
Jiménez
,
J.
, and
Pinelli
,
A.
, 1999, “
The Autonomous Cycle of Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
389
, pp.
335
359
.
148.
Jeong
,
J.
,
Hussain
,
F.
,
Schoppa
,
W.
, and
Kim
,
J.
, 1997, “
Coherent Structures Near the Wall in a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
332
, pp.
185
214
.
149.
Schoppa
,
W.
, and
Hussain
,
F.
, 1997, “
Genesis and Dynamics of Coherent Structures in Nearwall Turbulence: A New Look
,” in
Self-Sustaining Mechanisms of Wall Turbulence
,
R.
Panton
, ed.,
Computational Mechanics
,
Southampton, UK
, pp.
385
422
.
150.
Schoppa
,
W.
, and
Hussain
,
F.
, 2002, “
Coherent Structure Generation in Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
453
, pp.
57
108
.
151.
Hamilton
,
J.
,
Kim
,
J.
, and
Waleffe
,
F.
, 1995, “
Regeneration Mechanisms of Near-Wall Turbulence Structures
,”
J. Fluid Mech.
0022-1120,
287
, pp.
317
348
.
152.
Waleffe
,
F.
, 1997, “
On a Self-Sustaining Process in Shear Flows
,”
Phys. Fluids
1070-6631,
9
, pp.
883
900
.
153.
Waleffe
,
F.
, and
Kim
,
J.
, 1997, “
How Streamwise Rolls and Streaks Self-Sustain in a Shear Flow
,”
Self-Sustaining Mechanisms of Wall Turbulence
,
R.
Panton
, ed.,
Computational Mechanics
,
Southampton, UK
, pp.
309
332
.
154.
Waleffe
,
F.
, 2001, “
Exact Coherent Structures in Channel Flow
,”
J. Fluid Mech.
0022-1120,
435
, pp.
93
102
.
155.
Klewicki
,
J.
, and
Metzger
,
M.
, 1996, “
Viscous Wall Region Structure in High and Low Reynolds Number Turbulent Boundary Layers
,” AIAA Paper No. 96-2009.
156.
Wei
,
T.
, and
Willmarth
,
W.
, 1989, “
Reynolds Number Effects on the Structure of a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
204
, pp.
57
95
.
157.
Thomas
,
A.
, and
Bull
,
M.
, 1983, “
On the Role of Wall-Pressure Fluctuations in Deterministic Motions in the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
128
, pp.
283
322
.
158.
Wark
,
C.
, and
Nagib
,
H.
, 1991, “
Experimental Investigation of Coherent Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
230
, pp.
183
208
.
159.
Falco
,
R.
, 1991, “
A Coherent Structure Model of the Turbulent Boundary Layer and Its Ability to Predict Reynolds Number Dependence
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
336
, pp.
103
129
.
160.
Morrison
,
J.
,
Subramanian
,
C.
, and
Bradshaw
,
P.
, 1992, “
Bursts and the Law of the Wall in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
241
, pp.
75
108
.
161.
Klewicki
,
J.
, 1997, “
Self-Sustaining Traits of Near-Wall Motions Underlying Boundary Layer Stress Transport
,”
Self-Sustaining Mechanisms of Wall Turbulence
,
R.
Panton
, ed.,
Computational Mechanics
,
Southampton, UK
, pp.
135
166
.
162.
Tardu
,
F.
,
Nacereddine
,
R.
, and
Doche
,
O.
, 2008, “
An Interactive Bypass Transition Mechanism in Wall-Bounded Flows
,”
J. Fluid Mech.
0022-1120,
615
, pp.
345
369
.
163.
Perry
,
A.
,
Henbest
,
S.
, and
Chong
,
M.
, 1986, “
A Theoretical and Experimental Study of Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
165
, pp.
163
199
.
164.
Perry
,
A.
, and
Li
,
J.
, 1990, “
Experimental Support for the Attached Eddy Hypothesis in Zero Pressure Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
218
, pp.
405
438
.
165.
Perry
,
A.
,
Marusic
,
I.
, and
Li
,
J.
, 1994, “
Wall Turbulence Closure Based on Classical Similarity Laws and the Attached Eddy Hypothesis
,”
Phys. Fluids
1070-6631,
6
, pp.
1024
1035
.
166.
Theodorsen
,
T.
, 1952, “
Mechanism of Turbulence
,”
Second Midwestern Conference on Fluid Mechanics
, The Ohio State University, pp.
1
16
.
167.
Wu
,
X.
, and
Moin
,
P.
, 2009, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
0022-1120,
630
, pp.
5
41
.
168.
Marusic
,
I.
,
Uddin
,
A.
, and
Perry
,
A.
, 1997, “
Similarity Law for the Streamwise Turbulence Intensity in Zero Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
9
, pp.
3718
3724
.
169.
Hunt
,
J.
, and
Morrison
,
J.
, 2000, “
Eddy Structure in Turbulent Boundary Layers
,”
Eur. J. Mech. B/Fluids
0997-7546,
19
, pp.
673
694
.
170.
Drobinski
,
P.
,
Carlotti
,
P.
,
Newsom
,
R.
,
Banta
,
R.
,
Foster
,
R.
, and
Redelsperger
,
J. -L.
, 2004, “
The Structure of the Near-Neutral Surface Layer
,”
J. Atmos. Sci.
0022-4928,
61
, pp.
699
714
.
171.
McNaughton
,
K.
, 2004, “
Attached Eddies and Production Spectra in the Atmospheric Logarithmic Layer
,”
Boundary-Layer Meteorol.
0006-8314,
111
, pp.
1
18
.
172.
Antonia
,
R.
, and
Kim
,
J.
, 1994, “
Low Reynolds Number Effects on Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
276
, pp.
61
80
.
173.
Panton
,
R.
, 2009, “
Scaling and Correlation of Vorticity Fluctuations in Turbulent Channels
,”
Phys. Fluids
1070-6631,
21
, p.
115104
.
174.
Sreenivasan
,
K.
, and
Bershadskii
,
A.
, 2006, “
Finite-Reynolds-Number Effects in Turbulence Using Logarithmic Expansions
,”
J. Fluid Mech.
0022-1120,
554
, pp.
477
498
.
175.
Davidson
,
P.
,
Nickels
,
T.
, and
Krogstad
,
P. -A.
, 2006, “
The Logarithmic Structure Function Law in Wall-Layer Turbulence
,”
J. Fluid Mech.
0022-1120,
550
, pp.
51
60
.
176.
Davidson
,
P.
,
Krogstad
,
P. -A.
, and
Nickels
,
T.
, 2006, “
A Refined Interpretation of the Logarithmic Structure Function Law in Wall Layer Turbulence
,”
Phys. Fluids
1070-6631,
18
, p.
065112
.
177.
Davidson
,
P.
, and
Krogstad
,
P. -A.
, 2009, “
A Simple Model for the Streamwise Fluctuations in the Log-Law Region of a Boundary Layer
,”
Phys. Fluids
1070-6631,
21
, p.
055105
.
178.
Dallas
,
V.
,
Vassilicos
,
J.
, and
Hewitt
,
G.
, 2009, “
Stagnation Point von Karman Coefficient
,”
Phys. Rev. E
1063-651X,
80
, p.
046306
.
179.
Kerstein
,
A.
, 1999, “
One-Dimensional Turbulence: Model Formulation and Application to Homogeneous Turbulence, Shear Flows, and Buoyant Stratified Flows
,”
J. Fluid Mech.
0022-1120,
392
, pp.
277
334
.
180.
McKeon
,
B.
,
Li
,
J.
,
Jiang
,
W.
,
Morrison
,
J.
, and
Smits
,
A.
, 2004, “
Further Observations on the Mean Velocity Distribution in Fully-Developed Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
501
, pp.
135
147
.
181.
McKeon
,
B.
,
Zagarola
,
M.
, and
Smits
,
A.
, 2005, “
A New Friction Factor Relationship for Fully Developed Pipe Flow
,”
J. Fluid Mech.
0022-1120,
538
, pp.
429
443
.
182.
McKeon
,
B.
, and
Morrison
,
J.
, 2007, “
Asymptotic Scaling in Turbulent Pipe Flow
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
771
787
.
183.
Dimotakis
,
P.
, 2000, “
The Mixing Transition In Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
409
, pp.
69
98
.
184.
Elsnab
,
J.
,
Klewicki
,
J.
,
Maynes
,
D.
, and
Ameel
,
T.
, “
Mean Dynamics of Channel Flow Transition
,”
J. Fluid Mech.
0022-1120, to be published.
185.
Jimenez
,
J.
, and
Moser
,
R.
, 2007, “
What Are We Learning From Simulating Wall Turbulence?
,”
Proc. R. Soc. London, Ser. A
0950-1207,
365
, pp.
715
732
.
186.
Klewicki
,
J.
,
Murray
,
J.
, and
Falco
,
R.
, 1994, “
Vortical Motion Contributions to Stress Transport in Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
6
, pp.
277
286
.
187.
Mansour
,
N.
,
Kim
,
J.
, and
Moin
,
P.
, 1988, “
Reynolds Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
194
, pp.
15
44
.
188.
Spalart
,
P.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer Up to Rθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
98
.
189.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2001, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
382
393
.
190.
Komminaho
,
J.
, and
Skote
,
M.
, 2002, “
Reynolds Stress Budgets in Couette and Boundary Layer Flows
,”
Flow, Turbul. Combust.
1386-6184,
68
, pp.
167
192
.
191.
Sahay
,
A.
, and
Sreenivasan
,
K.
, 1999, “
The Wall-Normal Position in Pipe and Channel Flows at Which Viscous and Turbulent Shear Stresses Are Equal
,”
Phys. Fluids
1070-6631,
11
, pp.
3186
3188
.
192.
Laadhari
,
F.
, 2002, “
On the Evolution of Maximum Turbulent Kinetic Energy Production in a Channel Flow
,”
Phys. Fluids
1070-6631,
14
, pp.
L65
L68
.
193.
Laadhari
,
F.
, 2007, “
Reynolds Number Effect on the Dissipation Function in Wall-Bounded Flows
,”
Phys. Fluids
1070-6631,
19
, p.
038101
.
194.
Tsuji
,
Y.
, 1999, “
Peak Position of Dissipation Spectrum in Turbulent Boundary Layers
,”
Phys. Rev. E
1063-651X,
59
, pp.
7235
7238
.
195.
Mochizuki
,
S.
, and
Nieuwstadt
,
F.
, 1996, “
Reynolds-Number-Dependence of the Maximum in the Streamwise Velocity Fluctuations in Wall Turbulence
,”
Exp. Fluids
0723-4864,
21
, pp.
218
226
.
196.
Moser
,
R.
,
Kim
,
J.
, and
Mansour
,
N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
945
.
197.
Metzger
,
M.
,
Klewicki
,
J.
,
Bradshaw
,
K.
, and
Sadr
,
R.
, 2001, “
Scaling the Near-Wall Axial Turbulent Stress in the Zero Pressure Gradient Boundary Layer
,”
Phys. Fluids
1070-6631,
13
, pp.
1819
1821
.
198.
Jimenez
,
J.
, and
Hoyas
,
S.
, 2006, “
Turbulent Fluctuations Above the Buffer Layer of Wall-Bounded Flows
,”
J. Fluid Mech.
0022-1120,
611
, pp.
215
236
.
199.
Morrison
,
J.
,
Jiang
,
W.
,
Mckeon
,
B.
, and
Smits
,
A.
, 2004, “
Scaling of the Streamwise Velocity Component in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
508
, pp.
99
131
.
200.
Kunkel
,
G.
, and
Marusic
,
I.
, 2006, “
Study of the Near-Wall-Turbulent Region of the High-Reynolds-Number Boundary Layer Using an Atmospheric Flow
,”
J. Fluid Mech.
0022-1120,
548
, pp.
375
402
.
201.
Priyadarshana
,
P.
,
Klewicki
,
J.
,
Treat
,
S.
, and
Foss
,
J.
, 2007, “
Statistical Structure of Turbulent-Boundary-Layer Velocity-Vorticity Products at High and Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
570
, pp.
307
346
.
202.
Zhao
,
R.
, and
Smits
,
A.
, 2007, “
Scaling of the Wall-Normal Turbulence Component in High-Reynolds Number Pipe Flow
,”
J. Fluid Mech.
0022-1120,
576
, pp.
457
473
.
203.
Panton
,
R.
, 1997, “
A Reynolds Stress Function for Wall Layers
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
325
330
.
204.
Sreenivasan
,
K.
, 1989, “
The Turbulent Boundary Layer
,”
Frontiers in Experimental Fluid Mechanics
(
Lecture Notes in Engineering
),
M.
Gad-el-Hak
, ed.,
Springer-Verlag
,
Berlin
, Vol.
46
, pp.
159
209
.
205.
Guala
,
M.
,
Hommema
,
S.
, and
Adrian
,
R.
, 2006, “
Large-Scale and Very-Large-Scale Motions in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
554
, pp.
521
542
.
206.
Hutchins
,
N.
, and
Marusic
,
I.
, 2007, “
Evidence of Very Long Meandering Features in the Logarithmic Region of Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
579
, pp.
1
28
.
207.
Priyadarshana
,
P.
, and
Klewicki
,
J.
, 2004, “
Study of the Motions Contributing to the Reynolds Stress in High and Low Reynolds Number Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
16
, pp.
4586
4600
.
208.
Klewicki
,
J.
, 1989, “
On the Interactions Between the Inner and Outer Region Motions in Turbulent Boundary Layers
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
209.
Metzger
,
M.
, 2002, “
Scalar Dispersion in High Reynolds Number Turbulent Boundary Layers
,” Ph.D. thesis, University of Utah, Salt Lake City, UT.
210.
Klewicki
,
J.
, and
Falco
,
R.
, 1996, “
Spanwise Vorticity Structure in Turbulent Boundary Layers
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
363
376
.
211.
Emmerling
,
R.
, 1973, “
Translation of an Extended Version of Mittielungen aus den Max-Planck-Institut fur Stromungsforschung und der Aerodynamischen Versuchsanstalt
,” No. 56.
212.
Wu
,
Y.
, and
Christensen
,
K.
, 2006, “
Population Trends of Spanwise Vortices in Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
568
, pp.
55
76
.
213.
Natrajan
,
V.
,
Wu
,
Y.
, and
Christensen
,
K.
, 2007, “
Spatial Signatures of Retrograde Spanwise Vortices in Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
574
, pp.
155
167
.
214.
Ganapathisubramani
,
B.
, 2008, “
Statistical Structure of Momentum Sources and Sinks in the Outer Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
606
, pp.
225
237
.
215.
Hu
,
Z.
,
Morley
,
C.
, and
Sandham
,
N.
, 2006, “
Wall Pressure and Shear Stress Spectra From Direct Simulations of Channel Flow
,”
AIAA J.
0001-1452,
44
, pp.
1541
1549
.
216.
Farabee
,
T.
, and
Casarella
,
M.
, 1991, “
Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
3
, pp.
2410
2420
.
217.
Bradshaw
,
P.
, 1967, “
Inactive Motions and Pressure Fluctuations in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
30
, pp.
241
258
.
218.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
219.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R.
, 2005, “
Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
0022-1120,
535
, pp.
189
214
.
220.
Head
,
M.
, and
Bandyopadhyay
,
P.
, 1981, “
New Aspects of Turbulent Boundary Layer Structure
,”
J. Fluid Mech.
0022-1120,
107
, pp.
297
337
.
221.
Zhou
,
J.
,
Adrian
,
R.
,
Balachandar
,
S.
, and
Kendall
,
T.
, 1999, “
Mechanisms for Generation Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
222.
Falco
,
R.
, 1977, “
Coherent Motions in the Outer Region of Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
20
, pp.
S124
S132
.
223.
Falco
,
R.
, 1983, “
New Results, A Review and Synthesis of the Mechanism of Turbulence Production in Boundary Layers and Its Modification
,” AIAA Paper No. 83-0377.
224.
Klewicki
,
J.
,
Gendrich
,
C.
,
Foss
,
J.
, and
Falco
,
R.
, 1990, “
On the Sign of the Instantaneous Spanwise Vorticity Component in the Near-Wall Region of Turbulent Boundary Layers
,”
Phys. Fluids A
0899-8213,
2
, pp.
1497
1500
.
225.
Klewicki
,
J.
, and
Hirschi
,
C.
, 2004, “
Flow Field Properties Local to Near-Wall Shear Layers in a Low Reynolds Number Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
16
, pp.
4163
4176
.
226.
del Álamo
,
J. C.
,
Jimenez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R.
, 2006, “
Self-Similar Vortex Clusters in the Turbulent Logarithmic Region
,”
J. Fluid Mech.
0022-1120,
561
, pp.
329
358
.
227.
Chong
,
M.
,
Perry
,
A.
, and
Cantwell
,
B.
, 1990, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
0899-8213,
2
, pp.
765
777
.
228.
Wark
,
C.
, 1988, “
Experimental Investigation of Coherent Structures in Turbulent Boundary Layers
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
229.
Guezennec
,
Y.
, 1985, “
Documentation of Large Coherent Structures Associated With Wall Events in Turbulent Boundary Layers
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
230.
Meinhart
,
C.
, and
Adrian
,
R.
, 1995, “
On the Existence of Uniform Momentum Zones in a Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
7
, pp.
694
696
.
231.
Christensen
,
K.
, and
Adrian
,
R.
, 2001, “
Statistical Evidence of Hairpin Vortex Packets in Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
431
, pp.
433
443
.
232.
Ganapathisubramani
,
B.
,
Hutchins
,
N.
,
Hambleton
,
W.
,
Longmire
,
E.
, and
Marusic
,
I.
, 2005, “
Investigation of Large Scale Coherence in a Turbulent Boundary Layer Using Two-Point Correlations
,”
J. Fluid Mech.
0022-1120,
524
, pp.
57
80
.
233.
Hambleton
,
W.
,
Hutchins
,
N.
, and
Marusic
,
I.
, 2006, “
Simultaneous Orthogonal-Plane Particle Image Velocimetry Measurements in a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
560
, pp.
53
64
.
234.
Adrian
,
R.
,
Balachandar
,
S.
, and
Liu
,
Z. -C.
, 2001, “
Spanwise Growth of Vortex Structures in Wall-Turbulence
,”
KSME Int. J.
1226-4865,
15
, pp.
1741
1749
.
235.
Tomkins
,
C.
, and
Adrian
,
R.
, 2003, “
Spanwise Structure and Scale Growth in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
490
, pp.
37
74
.
236.
Toh
,
S.
, and
Itano
,
T.
, 2005, “
Interaction Between a Large-Scale Structure and Near-Wall Structures in Channel Flow
,”
J. Fluid Mech.
0022-1120,
524
, pp.
249
262
.
237.
Hommema
,
S.
, and
Adrian
,
R.
, 2003, “
Packet Structure of Surface Eddies in the Atmospheric Boundary Layer
,”
Boundary-Layer Meteorol.
0006-8314,
106
, pp.
147
170
.
238.
Morris
,
S.
,
Stolpa
,
S.
,
Slaboch
,
P.
, and
Klewicki
,
J.
, 2007, “
Near-Surface Particle Image Velocimetry Measurements in a Transitionally Rough-Wall Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120,
580
, pp.
319
338
.
239.
Marusic
,
I.
, and
Heuer
,
W.
, 2007, “
Reynolds Number Invariance of the Structure Inclination Angle in Wall-Turbulence
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
114504
.
240.
Monty
,
J.
,
Stewart
,
J.
,
Williams
,
R.
, and
Chong
,
M.
, 2007, “
Large Scale Features in Turbulent Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
589
, pp.
147
156
.
241.
Balakumar
,
B.
, and
Adrian
,
R.
, 2007, “
Large- and Very-Large-Scale Motions in Channel and Boundary-Layer Flows
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
665
681
.
242.
Bailey
,
S.
,
Hultmark
,
M.
,
Smits
,
A.
, and
Schultz
,
M.
, 2008, “
Azimuthal Structure of Turbulence in High Reynolds Number Pipe Flow
,”
J. Fluid Mech.
0022-1120,
615
, pp.
121
138
.
243.
Klewicki
,
J.
,
Metzger
,
M.
,
Kelner
,
E.
, and
Thurlow
,
E.
, 1995, “
Viscous Sublayer Flow Visualizations at Rθ≅1,500,000
,”
Phys. Fluids
1070-6631,
7
, pp.
857
863
.
244.
Metzger
,
M.
,
Fershtut
,
A.
,
Kunkel
,
C.
, and
Klewicki
,
J.
, 2010, “
Reynolds Number Scaling of Pocket Events in the Viscous Sublayer
,”
Expts. in Fluids
0723-4864, to be published.
245.
Mathis
,
R.
,
Monty
,
J.
,
Hutchins
,
N.
, and
Marusic
,
I.
, 2009, “
Comparison of Large-Scale Amplitude Modulation in Turbulent Boundary Layers, Pipes, and Channel Flows
,”
Phys. Fluids
1070-6631,
21
, p.
111703
.
246.
McKeon
,
B.
, and
Sharma
,
J.
, 2010, “
A Critical Layer Model for Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120, in press.
247.
Metzger
,
M.
, 2006, “
Length and Time Scales of the Near-Surface Axial Velocity in a High Reynolds Number Turbulent Boundary Layer
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
534
541
.
248.
Coles
,
D.
, 1968, “
The Young Person’s Guide to the Data
,”
Computation of Turbulent Boundary Layers—1968 AFOSR-IFP-Stanford Conference
,
D. E.
Coles
and
E. A.
Hirst
, eds., Stanford University, p.
1
.
249.
Iwamoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2002, “
Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
678
689
.
250.
Fernholz
,
H.
,
Krauss
,
E.
,
Nockemann
,
M.
, and
Schober
,
M.
, 1995, “
Comparative Measurements in the Canonical Boundary Layer at Rθ≤6×104 on the Wall of the German-Dutch Wind Tunnel
,”
Phys. Fluids
1070-6631,
7
, pp.
1275
1281
.
251.
Skote
,
M.
, 2001, “
Studies of Turbulent Boundary Layer Flow Through Direct Numerical Simulation
,” Ph.D. thesis, Stockholm Royal Institute of Technology, Stockholm.
252.
Eggels
,
J.
,
Unger
,
F.
,
Weiss
,
H.
,
Westerweel
,
J.
,
Adrian
,
R.
, and
Friedrich
,
R.
, 1994, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
253.
Abe
,
H.
,
Matsuo
,
Y.
, and
Kawamura
,
H.
, 2005, “
A DNS Study of Reynolds-Number Dependence on Pressure Fluctuations in a Turbulent Channel Flow
,”
Fourth International Symposium on Turbulence and Shear Flow Phenomena
,
J.
Humphrey
,
T.
Gatski
,
J.
Eaton
,
R.
Friedrich
,
N.
Kasagi
, and
M.
Leschziner
, eds., Vol.
1
, pp.
189
194
.
254.
Morrison
,
J.
, 2007, “
The Interaction Between the Inner and Outer Regions of Turbulent Wall-Bounded Flow
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
683
698
.
255.
Smith
,
C.
, and
Metzler
,
S.
, 1983, “
The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
129
, pp.
27
54
.
256.
Rajagopalan
,
S.
, and
Antonia
,
R.
, 1993, “
Structure of the Velocity Field Associated With the Spanwise Vorticity in the Wall Region of a Turbulent Boundary Layer
,”
Phys. Fluids A
0899-8213,
5
, pp.
2502
2510
.
257.
Crawford
,
C.
, and
Karniadakis
,
G.
, 1997, “
Reynolds Stress Analysis of EMHD-Controlled Wall Turbulence. Part 1. Streamwise Forcing
,”
Phys. Fluids
1070-6631,
9
, pp.
788
806
.
258.
Ong
,
L.
, 1992, “
Visualization of Turbulent Flows With Simultaneous Velocity and Vorticity Measurements
,” Ph.D. thesis, University of Maryland, College Park, MD.
You do not currently have access to this content.