Motivated by the objective of improving an understanding of the complex rheological fluid dynamics in fluid engineering and biomedical engineering, we consider the creeping flow of Burgers’ fluid with a fractional model through a peristaltic tube in the present article. Homotopy analysis method is used to solve the problem and obtain the approximate analytical solution in terms of axial velocity, volumetric flow rate, pressure gradient, stream function and mechanical efficiency under the long wavelength approximation. It is assumed that the cross-section of the tube varies sinusoidally along the length of tube. The impacts of fractional parameters, material constants, time and amplitude on the pressure difference, frictional force across one wavelength and trapping, are depicted numerically. It is found that the second material constant helps the flow pattern, whereas the other three material constants resist it through the peristaltic tube. The effects of fractional parameters on flow pattern are found to be opposite to each other.

References

1.
Hayat
,
T.
,
Nadeem
,
S.
, and
Asghar
,
S.
, 2004, “
Periodic Unidirectional Flows of a Viscoelastic Fluid With the Fractional Maxwell Model
,”
Appl. Math. Comput.
,
151
, pp.
153
161
.
2.
Tan
,
W.
,
Pan
,
W.
, and
Xu
,
M.
, 2003, “
A Note on Unsteady Flows of a Viscoelastic Fluid With the Fractional Maxwell Model Between Two Parallel Plates
,”
Int. J. Non-Linear Mech.
,
38
, pp.
645
650
.
3.
Tan
,
W.
, and
Xu
,
M.
, 2002 “
Plane Surface Suddenly Set in Motion in a Viscoelastic Fluid With Fractional Maxwell Model
,”
Acta Mech. Sin.
,
18
, pp.
342
349
.
4.
Friedrich
,
C.
, 1991, “
Relaxation and Retardation Functions of the Maxwell model With Fractional Derivatives
,”
Rheol. Acta
,
30
, pp.
151
158
.
5.
Qi
,
H.
, and
Jin
,
H.
, 2006, “
Unsteady Rotating Flows of a Viscoelastic Fluid With the Fractional Maxwell Model Between Coaxial Cylinders
,”
Acta Mech. Sin.
,
22
, pp.
301
305
.
6.
Qi
,
H.
, and
Xu
,
M.
, 2007, “
Unsteady Flow of Viscoelastic Fluid With Fractional Maxwell Model in Channel
,”
Mech. Res. Commun.
,
34
, pp.
210
212
.
7.
Khan
,
M.
,
Ali
,
S. H.
,
Fetecau
,
C.
, and
Qi
,
H.
, 2009, “
Decay of Potential Vortex for a Viscoelastic Fluid with Fractional Maxwell Model
,”
Appl. Math. Model.
,
33
, pp.
2526
2533
.
8.
Vieru
,
D.
,
Fetecau
,
C.
, and
Fetecau
,
C.
, 2008, “
Flow of a Viscoelastic Fluid With the Fractional Maxwell Model Between Two Side Walls Perpendicular to a Plate
,”
Appl. Math. Comput.
,
200
, pp.
459
464
.
9.
Wang
,
S.
, and
Xu
,
M.
, 2009, “
Axial Couette Flow of Two Kinds of Fractional Viscoelastic Fluids in an Annulus
,”
Nonlinear Anal.: Real World Appl.
,
10
, pp.
1087
1096
.
10.
Khan
,
M.
,
Ali
,
S. H.
, and
Qi
,
H.
, 2009, “
On Accelerated Flows of a Viscoelastic Fluid With the Fractional Burgers’ Model
,”
Nonlinear Anal.: Real World Appl.
,
10
, pp.
2286
2296
.
11.
Qi
,
H.
, and
Xu
,
M.
, 2009, “
Some Unsteady Unidirectional Flows of a Generalized Oldroyd-B Fluid with Fractional Derivative
,”
Appl. Math. Model.
,
33
, pp.
4184
4191
.
12.
Qi
,
H.
, and
Xu
,
M.
, 2007, “
Stokes’ First Problem for a Viscoelastic Fluid With the Generalized Oldroyd-B Model
,”
Acta Mech. Sin.
,
23
, pp.
463
469
.
13.
Nadeem
,
S.
, 2007, “
General Periodic Flows of Fractional Oldroyd-B Fluid for an Edge
,”
Phys. Lett. A
,
368
, pp.
181
187
.
14.
Hayat
,
T.
,
Khan
,
M.
, and
Asghar
,
S.
, 2007, “
On the MHD Flow of Fractional Generalized Burgers’ Fluid With Modified Darcy’s Law
,”
Acta Mech. Sin.
,
23
, pp.
257
261
.
15.
Latham
,
T. W.
, 1966, “
Fluid Motion in a Peristaltic Pump
,” M. S. Thesis, MIT, Cambridge.
16.
Burns
,
J. C.
, and
Parkes
,
T.
, 1970, “
Peristaltic Motion
,”
J. Fluid Mech.
,
29
, pp.
731
743
.
17.
Shapiro
,
A. H.
,
Jafferin
,
M. Y.
, and
Weinberg
,
S. L.
, 1969, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
, pp.
799
825
.
18.
Tsiklauri
,
D.
, and
Beresnev
,
I.
, 2001, “
Non-Newtonian Effects in the Peristaltic Flow of a Maxwell Fluid
,”
Phys. Rev. E
,
64
, p.
036303
.
19.
Ali
,
N.
,
Hayat
,
T.
, and
Asghar
,
S.
, 2009, “
Peristaltic Flow of a Maxwell Fluid in a Channel With Compliant Walls
,”
Chaos, Solitons Fractals
,
39
, pp.
407
416
.
20.
Hayat
,
T.
,
Ali
,
N.
,
Asghar
,
S.
, and
Siddiqui
,
A. M.
, 2006, “
Exact Peristaltic Flow in Tubes With an Endoscope
,”
Appl. Math. Comput.
,
182
, pp.
359
368
.
21.
Hayat
,
T.
, and
Ali
,
N.
, 2008, “
Peristaltic Motion of a Jeffrey Fluid Under the Effect of a Magnetic Field in a Tube
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1343
1352
.
22.
Hayat
,
T.
,
Ali
,
N.
, and
Asghar
,
S.
, 2007, “
Peristaltic Motion of a Burger’s Fluid in a Planar Channel
,”
Appl. Math. Comput.
,
186
, pp.
309
329
.
23.
Tripathi
,
D.
,
Pandey
,
S. K.
, and
Das
,
S.
, 2010, “
Peristaltic Flow of Viscoelastic Fluid With Fractional Maxwell Model through a Channel
,”
Appl. Math. Comput.
,
215
, pp.
3645
3654
.
24.
Tripathi
,
D.
, 2011, “
Peristaltic Transport of a Viscoelastic Fluid in a Channel
,”
Acta Astron.
,
68
, pp.
1379
1385
.
25.
Tripathi
,
D.
, 2010, “
Numerical and Analytical Simulation of Peristaltic Flows of Generalized Oldroyd-B Fluids
,” Int. J. Numer. Methods Fluids, to be published.
26.
Tripathi
,
D.
, 2011, “
Peristaltic Transport of Fractional Maxwell Fluids in Uniform Tubes: Application of an Endoscope
,”
Comput. Math. App.
,
62
, pp.
1116
1126
.
27.
Tripathi
,
D.
, 2011, “
A Mathematical Model for the Peristaltic Flow of Chyme Movement in Small Intestine
,”
Math. Biosci.
,
233
, pp.
90
97
.
28.
Tripathi
,
D.
, 2011, “
Numerical Study on Peristaltic Transport of Fractional Bio-Fluids
,” J. Mech. Med. Biol., to be published.
29.
Liao
,
S. J.
, 1998, “
Homotopy Analysis Method: A New Analytic Method for Nonlinear Problems
,”
Appl. Math. Mech.
,
19
, pp.
957
962
.
30.
Liao
,
S. J.
, 2003,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
CRC Press
,
Chapman and Hall, Boca Raton, FL
.
31.
Takabatake
,
S.
,
Ayukawa
,
K.
, and
Mori
,
A.
, 1988, “
Peristaltic Pumping in Circular Cylindrical Tubes: A Numerical Study of Fluid Transport and its Efficiency
,”
J. Fluid Mech.
,
193
, pp.
267
283
.
You do not currently have access to this content.