In this paper, the mixing enhancement of a micromixer consisting of a step channel and a shuttlecock rotor suspended in the step is numerically analyzed. Asymptotic mixing performance is investigated as a function of Strouhal and Peclet numbers by particle tracking simulation and the Eulerian approach. The simulation results show that the rotor creates downward and inward flows in behind the rotor paddles, whereas the upward and outward flows are produced in front of the rotor paddles. At a small Strouhal number, convective mixing is very poor. However, the mixing direction is rotated by 90 deg, which can reduce the mixing time by the square of the aspect ratio of the cross section of the channel. In contrast, at a relatively large Strouhal number, good convective mixing occurs. Quantitative analysis of mixing performance of the mixer demonstrates that the mixing structures are similar for the same Strouhal number and mixing is improved with increasing Strouhal number. The mixing efficiency of the mixer decreases linearly with increasing log of the Peclet number at a relatively large Strouhal number.

1.
Stone
,
H. A.
, and
Kim
,
S.
, 2001, “
Microfluidics: Basic Issues, Applications, and Challenges
,”
AIChE J.
0001-1541,
47
, pp.
1250
1254
.
2.
Tan
,
W. H.
,
Suzuki
,
Y.
,
Kasagi
,
N.
,
Shikazono
,
N.
,
Furukawa
,
K.
, and
Ushida
,
T.
, 2005, “
A Laminar Micro Mixer for M-Immunomagnetic Cell Sorter
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
48
(
4
), pp.
425
435
.
3.
Tang
,
K. C.
,
Wibowo
,
R. M.
,
Ghista
,
D. N.
, and
Yobas
,
L.
, 2007, “
Micromixing Crowded Biological Agent by Folding Slugs Through Pillars
,”
Sens. Actuators B
0925-4005,
128
(
1
), pp.
340
348
.
4.
Ottino
,
J. M.
, and
Wiggins
,
S.
, 2004, “
Introduction: Mixing in Microfluidics
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
, pp.
923
935
.
5.
Bessoth
,
F. G.
,
de Mello
,
A. J.
, and
Manz
,
A.
, 1999, “
Microstructure for Efficient Continuous Flow Mixing
,”
Anal. Commun.
1359-7337,
36
, pp.
213
215
.
6.
Branebjerg
,
J.
,
Gravesen
,
P.
,
Krog
,
J. P.
, and
Nielsen
,
C. R.
, 1996, “
Fast Mixing by Lamination
,”
Proceedings of the Investigation of Micro Structures, Sensors, Actuators, Machines and Systems
,
IEEE
,
San Diego, CA
, pp.
441
446
.
7.
Miyake
,
R.
,
Lammerunk
,
T. S. J.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
, 1993, “
Micro Mixer With Fast Diffusion
,”
Proceedings of the Investigation of Micro Structure, Sensors, Actuators, Machines and Systems
,
IEEE
,
Fort Lauderdale, FL
, pp.
248
253
.
8.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezić
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
, 2002, “
Chaotic Mixer for Microchannel
,”
Science
0036-8075,
295
, pp.
647
651
.
9.
Liu
,
H. R.
,
Stremler
,
A. M.
,
Sharp
,
V. K.
,
Olsen
,
G. M.
,
Santiago
,
G. J.
,
Adrian
,
J. R.
,
Aref
,
H.
, and
Beebe
,
J. D.
, 2000, “
Passive Mixing in a Three-Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
1057-7157,
9
(
2
), pp.
190
197
.
10.
Tabeling
,
P.
,
Chabert
,
M.
,
Dodge
,
A.
,
Jullien
,
C.
, and
Okkles
,
F.
, 2004, “
Chaotic Mixing in Cross-Channel Micromixers
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
, pp.
987
1000
.
11.
Bottausci
,
F.
,
Mezic
,
I.
,
Meinhart
,
C. D.
, and
Cardonne
,
C.
, 2004, “
Mixing in the Shear Superposition Micromixer: Three-Dimensional Analysis
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
, pp.
1001
1018
.
12.
Woias
,
P.
,
Hauser
,
K.
, and
Geoger
,
E. Y.
, 2002, “
An Active Silicon Micromixer for μTAS Applications
,”
Proceedings of the μTAS
, Enschede, The Netherlands, pp.
2277
2282
.
13.
Oddy
,
M. H.
,
Santiago
,
J. H.
, and
Mikkelsen
,
J. C.
, 2001, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
0003-2700,
73
, pp.
5822
5832
.
14.
Bau
,
H. H.
,
Zhong
,
J. H.
, and
Yi
,
M. Q.
, 2001, “
A Minute Magneto Hydrodynamic (MHD) Mixer
,”
Sens. Actuators B
0925-4005,
79
, pp.
207
215
.
15.
Lu
,
L. -H.
,
Ryu
,
K. S.
, and
Liu
,
C.
, 2002, “
A Magnetic Microstirrer and Array for Microfluidic Mixing
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
462
469
.
16.
Ogami
,
Y.
,
Nishikawa
,
K.
, and
Ukita
,
H.
, 2005, “
Study on the Mixing Performance of A Micro Optical Rotor by CFD
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
71
(
710
), pp.
50
57
.
17.
Dinh
,
T. X.
, and
Ogami
,
Y.
, 2008, “
Effect of Optical Rotor on Mixing in Y-Shaped Microchannel Flow
,”
Trans. JSME. Fluid Science and Technology
,
3
(
2
), pp.
250
259
.
18.
Dinh
,
T. X.
, and
Ogami
,
Y.
, 2008, “
An Active Micromixer Enhances Mixing by a Rotating Shuttlecock Rotor
,”
Proceedings of the ASME Heat Transfer, Fluids, Energy and Energy Nano
, Jacksonville, FL.
19.
Hawkins
,
I. R.
, and
Wilkes
,
N. S.
, 1991, “
Moving Grids in Harwell-FLOW3D
,” AEA-InTec-0608.
20.
Volpert
,
M.
,
Mezic
,
I.
,
Meinhart
,
C. D.
, and
Dahleh
,
M.
, 1999, “
An Actively Controlled Micromixer
,”
Proceedings of the ASME Mechanical Engineering International Congress and Exposition
,
MEMS
,
Nashville, TN
, pp.
483
487
.
You do not currently have access to this content.