This communication reports the heat and mass transfer analysis in the stagnation-point flow toward a stretching sheet. An incompressible micropolar fluid takes into account the diffusion-thermo- (Dufour) and thermal-diffusion (Soret) effects. The arising nonlinear differential system is solved by homotopy analysis method. Convergence of the obtained homotopy solutions is clearly justified. Special emphasis has been given to various physical parameters through graphs and tables. It is noticed that fields are influenced appreciably with the variation of embedding parameters. A comparison of the present results with the existing numerical solution is discussed in a limiting sense.

1.
Eringen
,
A. C.
, 1966, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
0095-9057,
16
, pp.
1
8
.
2.
Ariman
,
T.
,
Turk
,
M. A.
, and
Sylvester
,
N. D.
, 1973, “
Microcontinuum Fluid Mechanics—A Review
,”
Int. J. Eng. Sci.
0020-7225,
11
(
8
), pp.
905
930
.
3.
Ariman
,
T.
,
Turk
,
M. A.
, and
Sylvester
,
N. D.
, 1974, “
Application of Microcontinuum Fluid Mechanics
,”
Int. J. Eng. Sci.
0020-7225,
12
(
4
), pp.
273
293
.
4.
Łukaszewicz
,
G.
, 1999,
Micropolar Fluids: Theory and Application
,
Birkhäuser
,
Basel
.
5.
Eringen
,
A. C.
, 2001,
Microcontinuum Field Theories. II: Fluent Media
,
Springer
,
New York
.
6.
Kelson
,
N. A.
, and
Farrel
,
T. W.
, 2001, “
Micropolar Flow Over a Porous Stretching Sheet With Strong Suction or Injection
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
4
), pp.
479
488
.
7.
Nazar
,
R.
,
Amin
,
N.
,
Filip
,
D.
, and
Pop
,
I.
, 2004, “
Stagnation Point Flow of a Micropolar Fluid Towards a Stretching Sheet
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
7
), pp.
1227
1235
.
8.
Hayat
,
T.
,
Javed
,
T.
, and
Abbas
,
Z.
, 2009, “
MHD Flow of a Micropolar Fluid Near a Stagnation-Point Towards a Non-Linear Stretching Surface
,”
Nonlinear Anal.: Real World Appl.
1468-1218,
10
(
3
), pp.
1514
1526
.
9.
Hayat
,
T.
,
Abbas
,
Z.
, and
Javed
,
T.
, 2008, “
Mixed Convection Flow of a Micropolar Fluid Over a Nonlinearly Stretching Sheet
,”
Phys. Lett. A
0375-9601,
372
(
5
), pp.
637
647
.
10.
Sajid
,
M.
,
Abbas
,
Z.
, and
Hayat
,
T.
, 2009, “
Homotopy Analysis for Boundary Layer Flow of a Micropolar Fluid Through a Porous Channel
,”
Appl. Math. Model.
0307-904X,
33
(
11
), pp.
4120
4125
.
11.
Tsai
,
R.
, and
Huang
,
J. S.
, 2009, “
Heat and Mass Transfer for Soret and Dufour’s Effects on Heimenz Flow Through Porous Medium Onto a Stretching Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
9–10
), pp.
2399
2406
.
12.
Bég
,
O. A.
,
Bakier
,
A. Y.
, and
Prasad
,
V. R.
, 2009, “
Numerical Study of Free Convection Magnetohydrodynamic Heat and Mass Transfer From a Stretching Surface to a Saturated Porous Medium With Soret and Dufour Effects
,”
Comput. Mater. Sci.
0927-0256,
46
(
1
), pp.
57
65
.
13.
Liao
,
S. J.
, 2009, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
4
), pp.
983
997
.
14.
Xu
,
H.
,
Liao
,
S. J.
, and
You
,
X. C.
, 2009, “
Analysis of Nonlinear Fractional Partial Differential Equations With Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
4
), pp.
1152
1156
.
15.
Xu
,
H.
, and
Liao
,
S. J.
, 2008, “
Dual Solutions of Boundary Layer Flow Over an Upstream Moving Plate
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
13
(
2
), pp.
350
358
.
16.
Xu
,
H.
,
Liao
,
S. J.
, and
Pop
,
I.
, 2006, “
Series Solution of Unsteady Boundary Layer Flows of Non-Newtonian Fluids Near a Forward Stagnation Point
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
139
(
1–2
), pp.
31
43
.
17.
Abbasbandy
,
S.
, 2008, “
Approximate Solution for the Nonlinear Model of Diffusion And Reaction in Porous Catalysts by Means of the Homotopy Analysis Method
,”
Chem. Eng. J.
0300-9467,
136
(
2–3
), pp.
144
150
.
18.
Abbasbandy
,
S.
, 2008, “
The Application of Homotopy Analysis Method to Solve a Generalized Hirota-Satsuma Coupled KdV Equation
,”
Phys. Lett. A
0375-9601,
372
(
6
), pp.
613
618
.
19.
Abbasbandy
,
S.
, and
Zakaria
,
F. S.
, 2008, “
Soliton Solution for the Fifth-Order KdV Equation With Homotopy Analysis Method
,”
Nonlinear Dyn.
0924-090X,
51
(
1–2
), pp.
83
87
.
20.
Kechil
,
S. A.
, and
Hashim
,
I.
, 2009, “
Approximate Analytical Solution for MHD Stagnation-Point Flow in Porous Media
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
4
), pp.
1346
1354
.
21.
Hashim
,
I.
,
Abdulaziz
,
O.
, and
Momani
,
S.
, 2009, “
Homotopy Analysis Method for Fractional IVPs
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
3
), pp.
674
684
.
22.
Hayat
,
T.
,
Sajjad
,
R.
, and
Asghar
,
S.
, 2010, “
Series Solution for MHD Channel Flow of a Jeffery Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
15
(
9
), pp.
2400
2406
.
23.
Hayat
,
T.
,
Maqbool
,
K.
, and
Asghar
,
S.
, 2010, “
The Influence of Hall Current and Heat Transfer on the Flow of a Fourth Grade Fluid
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
26
(
3
), pp.
501
518
.
24.
Hayat
,
T.
,
Mustafa
,
M.
, and
Mesloub
,
S.
, 2010, “
Mixed Convection Boundary Layer Flow Over a Stretching Surface Filled With a Maxwell Fluid in Presence of Soret and Dufour’s Effect
,”
Z. Naturforsch. A
0044-3166,
65A
, pp.
401
410
.
25.
Hayat
,
T.
, and
Mustafa
,
M.
, 2010, “
Influence of Thermal Radiation on the Unsteady Mixed Convection Flow of a Jeffrey Fluid Over a Stretching Sheet
,”
Z. Naturforsch. A
0044-3166,
65A
, pp.
711
719
.
26.
Hayat
,
T.
,
Mustafa
,
M.
, and
Asghar
,
S.
, 2010, “
Unsteady Flow With Heat and Mass Transfer of a Third Grade Fluid in Presence of Chemical Reaction
,”
Nonlinear Anal.: Real World Appl.
1468-1218,
11
(
4
), pp.
3186
3197
.
27.
Hayat
,
T.
, and
Nawaz
,
M.
, 2010, “
Hall and Ion-Slip Effects on Three-Dimensional Flow of a Second Grade Fluid
,”
Int. J. Numer. Methods Fluids
0271-2091, in press.
28.
Hayat
,
T.
,
Maqbool
,
K.
, and
Asghar
,
S.
, 2009, “
Hall and Heat Transfer Effects on the Steady Flow of a Sisko Fluid
,”
Z. Naturforsch. A
0044-3166,
64A
, pp.
769
782
.
29.
Ahmadi
,
G.
, 1976, “
Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow Over a Semi-Infinite Flat Plate
,”
Int. J. Eng. Sci.
0020-7225,
14
(
7
), pp.
639
646
.
30.
Peddieson
,
J.
, 1972, “
An Application of the Micropoloar Fluid Model to the Calculation of Turbulent Shear Flow
,”
Int. J. Eng. Sci.
0020-7225,
10
(
1
), pp.
23
32
.
You do not currently have access to this content.