Recent advances in the field of large-scale solar thermochemical processing have given rise to substantial research efforts and demonstration projects. Many applications of high-temperature solar-thermal technology employ an enclosed cavity environment, thus requiring a transparent window through which concentrated solar energy can enter. One configuration employed is a two-cavity reactor connected by a narrow aperture, where solar flux entering through the window is focused at the aperture plane before diverging into the lower chamber, where the chemical reaction occurs. For the Zn/ZnO thermochemical cycle where Zn is solar-thermally reduced from ZnO in a high-temperature cavity environment, effective removal of the product gas stream containing zinc vapor is of paramount importance to prevent fouling by condensation on the reactor window. Two argon-jet configurations, tangential and radial, located around the circumference of the upper chamber are used to control the gas flow within the reactor cavity. First, the tangential jets drive a vortex flow, and second, the radial wall jet travels across the window before converging at the reactor center line and turning downward to create a downward jet. The tangential jet-induced flow creates a rotating vortex, contributing to overall flow stability, and the radial jet-induced downward flow counters the updraft created by the vortex while actively cooling and sweeping clear the inner surface of the window. Flow visualization in a full-scale transparent model of the reactor using smoke and laser illumination is employed to characterize the effectiveness of aerodynamic window clearing and to characterize the processes by which a vortex flow develops and breaks down in a two-chamber solar reactor geometry. Based on a large dataset of flow visualization images, a metric is developed to define vortex stability over a wide range of flow conditions and identify an ideal operating range for which a vortex formation path is established that maintains stable flow patterns and removes product gases while minimizing the use of argon gas. The predominant influence of vortex instability and breakdown is identified and examined for the case of a beam-down, two-chamber solar reactor geometry.

References

1.
Lewis
,
N. S.
, and
Nocera
D. G.
,
2006
, “
Powering the Planet: Chemical Challenges in Solar Energy Utilization
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
43
), pp.
15729
15735
.10.1073/pnas.0603395103
2.
Baykara
,
S.
,
2004
, “
Experimental Solar Water Thermolysis
,”
Int. J. Hydrogen Energy
,
29
(
14
), pp.
1459
1469
.10.1016/j.ijhydene.2004.02.011
3.
Baykara
,
S. Z.
,
2004
, “
Hydrogen Production by Direct Solar Thermal Decomposition of Water, Possibilities for Improvement of Process Efficiency
,”
Int. J. Hydrogen Energy
,
29
, pp.
1451
1458
.10.1016/j.ijhydene.2004.02.014
4.
Muradov
,
N.
, and
Veziroglu
T.
,
2008
, “
‘Green’ Path From Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
6804
6839
.10.1016/j.ijhydene.2008.08.054
5.
Huang
,
C.
,
Yao
,
W.
,
T-Raissi
,
A.
, and
Muradov
,
N.
,
2011
, “
Development of Efficient Photoreactors for Solar Hydrogen Production
,”
Solar Energy
,
85
(
1
), pp.
19
27
.10.1016/j.solener.2010.11.004
6.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
,
2006
, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
,
31
(
14
), pp.
2805
2822
.10.1016/j.energy.2005.11.002
7.
Loutzenhiser
,
P. G.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Materials
,
3
(
11
), pp.
4922
4938
.10.3390/ma3114922
8.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.10.1115/1.2840576
9.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
,
2004
, “
Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
633
637
.10.1115/1.1639001
10.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
,
2006
, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Solar Energy
,
80
(
5
), pp.
500
511
.10.1016/j.solener.2005.04.015
11.
Epstein
,
M.
,
Olalde
,
G.
,
Santén
,
S.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
,
2008
, “
Towards the Industrial Solar Carbothermal Production of Zinc
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
014505
.10.1115/1.2807214
12.
Melchior
,
T.
,
Perkins
,
C.
,
Weimer
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1496
1503
.10.1016/j.ijthermalsci.2007.12.003
13.
Kogan
,
M.
,
2003
, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. I. The Unseeded Reactor
,”
Int. J. Hydrogen Energy
,
28
(
11
), pp.
1187
1198
.10.1016/S0360-3199(02)00282-3
14.
Kogan
,
A.
,
Kogan
,
M.
, and
Barak
,
S.
,
2004
, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. II. Room Temperature Simulation Tests of Seeded Solar Reactor
,”
Int. J. Hydrogen Energy
,
29
(
12
), pp.
1227
1236
.10.1016/j.ijhydene.2003.12.002
15.
Kogan
,
A.
,
Israeli
,
M.
, and
Alcobi
,
E.
,
2007
, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. IV. Preliminary Simulation of a Confined Tornado Flow Configuration by Computational Fluid Dynamics
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4800
4810
.10.1016/j.ijhydene.2007.08.016
16.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia Phys. Sci. Technol.
,
15
, pp.
237
256
.
17.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.10.1016/j.ijhydene.2012.08.086
18.
Leonardi
,
E.
,
2012
, “
Detailed Analysis of the Solar Power Collected in a Beam-Down Central Receiver System
,”
Solar Energy
,
86
(
2
), pp.
734
745
.10.1016/j.solener.2011.11.017
19.
Kogan
,
A.
, and
Kogan
,
M.
,
2002
, “
The Tornado Flow Configuration—An Effective Method for Screening of a Solar Reactor Window
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
206
214
.10.1115/1.1487882
20.
Ozalp
,
N.
, and
Kanjirakat
,
A.
,
2010
, “
A Computational Fluid Dynamics Study on the Effect of Carbon Particle Seeding for the Improvement of Solar Reactor Performance
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122901
.10.1115/1.4002173
21.
Ozalp
,
N.
, and
JayaKrishna
D.
,
2010
, “
CFD Analysis on the Influence of Helical Carving in a Vortex Flow Solar Reactor
,”
Int. J. Hydrogen Energy
,
35
(
12
), pp.
6248
6260
.10.1016/j.ijhydene.2010.03.100
22.
Shilapuram
,
V.
,
Jaya Krishna
,
D.
, and
Ozalp
,
N.
,
2011
, “
Residence Time Distribution and Flow Field Study of Aero-shielded Solar Cyclone Reactor for Emission-Free Generation of Hydrogen
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13488
13500
.10.1016/j.ijhydene.2011.08.035
23.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
24.
Mudkavi
,
V. Y.
,
1993
,
The Phenomenon of Vortex Breakdown
,
National Aerospace Laboratories
,
Bangalore, India
.
25.
Faler
,
J. H.
, and
Leibovich
,
S.
,
2006
, “
An Experimental Map of the Internal Structure of a Vortex Breakdown
,”
J. Fluid Mech.
,
86
(
2
), pp.
313
335
.10.1017/S0022112078001159
26.
Hallett
,
W. L. H.
, and
Toews
,
D. J.
,
1987
, “
The Effects of Inlet Conditions and Expansion Ratio on the Onset of Flow Reversal in Swirling Flow in a Sudden Expansion
,”
Exp. Fluids
,
5
(
2
), pp.
129
133
.10.1007/BF00776183
27.
Greenspan
,
H. P.
,
1968
,
Theory of Rotating Fluids
,
Cambridge University
,
Cambridge, UK
.
28.
Faler
,
J.
, and
Leibovich
,
S.
,
1978
, “
An Experimental Map of the Internal Structure of a Vortex Breakdown
,”
J. Fluid Mech.
,
86
, pp.
313
335
.10.1017/S0022112078001159
29.
Escudier
,
M. P.
, and
Zehnder
,
N.
,
2006
, “
Vortex-Flow Regimes
,”
J. Fluid Mech.
,
115
(
1
), pp.
105
121
.10.1017/S0022112082000676
30.
Matsui
,
M.
, and
Tamura
,
Y.
,
2009
, “
Influence of Swirl Ratio and Incident Flow Conditions on Generation of Tornado-Like Vortex
,” Proc. 5th European-African Conferences on Wind Engineering, Florence, Italy, pp. pp.
213
216
.10.1016/j.ijheatfluidflow.2005.08.003
31.
Church
,
C.
,
Snow
,
J.
,
Baker
,
G.
, and
Agee
,
E.
,
1979
, “
Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A laboratory Investigation
,”
J. Atmospheric Sci.
,
36
(
9
), pp.
1755
1776
.10.1175/1520-0469(1979)036%3C1755:COTLVA%3E2.0.CO;2
32.
Mitsuta
,
Y.
, and
Monji
,
N.
,
1985
, “
A Laboratory Experiment on the Multiple Structure in Tornado-Like Vortices
,”
Disaster Prevention Research Institute of Japan Annals
,
26
(
B-1
), pp.
427
436
.
33.
Jochmann
,
P.
,
Sinigersky
,
A.
,
Hehle
,
M.
,
Schäfer
,
O.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2006
, “
Numerical Simulation of a Precessing Vortex Breakdown
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
192
203
.10.1016/j.ijheatfluidflow.2005.08.003
You do not currently have access to this content.