Direct injection of natural gas into the cylinder of spark ignition (SI) engines has shown a great potential to achieve the best fuel economy and reduced emission levels. Since the technology is rather new, in-cylinder flow phenomena have not been completely investigated. In this study, a numerical model has been developed in AVL FIRE software to perform an investigation of natural gas direct injection into the cylinder of spark ignition internal combustion engines. In this regard, two main parts have been taken into consideration aiming to convert a multipoint port fuel injection (MPFI) gasoline engine to a direct injection natural gas (NG) engine. In the first part of the study, multidimensional simulations of transient injection process, mixing, and flow field have been performed. Using the moving mesh capability, the validated model has been applied to methane injection into the cylinder of a direct injection engine. Five different piston head shapes have been taken into consideration in the investigations. An inwardly opening single-hole injector has been adapted to all cases. The injector location has been set to be centrally mounted. The effects of combustion chamber geometry have been studied on the mixing of air-fuel inside the cylinder via the quantitative and qualitative representation of results. In the second part, an investigation of the combustion process has been performed on the selected geometry. The spark plug location and ignition timing have been studied as two of the most important variables. Simulation of transient injection was found to be a challenging task because of required computational effort and numerical instabilities. Injection results showed that the narrow bowl piston head geometry is the most suited geometry for NG direct injection (DI) application. A near center position has been shown to be the best spark plug location based on the combustion studies. It has been shown that advanced ignitions timings of up to 50 degrees crank angle ( °CA) should be used in order to obtain better combustion performance.
Skip Nav Destination
Article navigation
September 2013
Research-Article
A Numerical Investigation of Combustion and Mixture Formation in a Compressed Natural Gas DISI Engine With Centrally Mounted Single-Hole Injector
B. Yadollahi,
M. Boroomand
M. Boroomand
1
Associate Professor
e-mail: Boromand@aut.ac.ir
e-mail: Boromand@aut.ac.ir
Amirkabir University of Technology (Tehran polytechnic)
,Tehran, Iran 15875-4413
1Corresponding author. Present address: Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran, 15875-4413.
Search for other works by this author on:
B. Yadollahi
PhD Graduate
e-mail: Byadollahi@aut.ac.ir
e-mail: Byadollahi@aut.ac.ir
M. Boroomand
Associate Professor
e-mail: Boromand@aut.ac.ir
e-mail: Boromand@aut.ac.ir
Amirkabir University of Technology (Tehran polytechnic)
,Tehran, Iran 15875-4413
1Corresponding author. Present address: Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran, 15875-4413.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received April 29, 2012; final manuscript received May 12, 2013; published online June 10, 2013. Assoc. Editor: Pavlos P. Vlachos.
J. Fluids Eng. Sep 2013, 135(9): 091101 (9 pages)
Published Online: June 10, 2013
Article history
Received:
April 29, 2012
Revision Received:
May 12, 2013
Citation
Yadollahi, B., and Boroomand, M. (June 10, 2013). "A Numerical Investigation of Combustion and Mixture Formation in a Compressed Natural Gas DISI Engine With Centrally Mounted Single-Hole Injector." ASME. J. Fluids Eng. September 2013; 135(9): 091101. https://doi.org/10.1115/1.4024560
Download citation file:
Get Email Alerts
Shock Vector Control of a Double Divergent Nozzle for Futuristic Space Vehicles
J. Fluids Eng (June 2025)
Related Articles
Modeling Mixture Formation in a Gasoline Direct Injection Engine
J. Appl. Mech (November,2006)
Numerical Simulation of Re-Entrant Bowl Effects on Natural-Gas Spark-Ignition Operation
J. Eng. Gas Turbines Power (June,2019)
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
J. Energy Resour. Technol (November,2019)
Ignition of Diesel Pilot Fuel in Dual-Fuel Engines
J. Eng. Gas Turbines Power (August,2019)
Related Proceedings Papers
Related Chapters
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Numerical Simulation of Internal Flow for Nozzle on Gasoline Direct Injection Engine
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3