Capillary tubes have been used in household refrigerators and other cooling systems for several decades. Complicated geometry, inevitable manufacturing variations, and complex two-phase phenomena have been major prohibitory factors in the development of reliable and efficient modeling tools to analyze the flow properties inside capillary tubes. Friction factor correlations as are available in the open literature, and as examined by the author, unanimously fail to give an accurate analysis of the refrigerant flow. The delicate operation of a capillary tube makes experimentation cumbersome, time and cost intensive, and prone to errors. The present study introduces a method to utilize the data obtained from a standard nitrogen flow test for a given capillary tube to compensate for the geometric uncertainties and predict refrigerant flow properties through the tube at any desired spatial resolution, inlet state, and flow rate. Therefore, exploratory studies and capillary tube modifications for the purpose of system development and optimization can be greatly simplified.

References

1.
Ghanbari
,
A.
,
Farshad.
F. F.
, and
Rieke
,
H. H.
,
2011
, “
Newly Developed Friction Factor Correlation for Pipe Flow and Flow Assurance
,”
J. Chem. Eng. Mater. Sci.
,
2
(
6
), pp.
83
86
.
2.
Wood
,
D. J.
,
1996
, “
An Explicit Friction Factor Relationship
,”
Trans. Am. Soc. Civ. Eng.
,
36
(
12
), pp.
60
66
.
3.
Churchill
,
S. W.
,
1977
, “
Frictional Equation Spans All Fluid Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
4.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flows
,”
Trans. ASME
,
66
(
8
), pp.
671
684
.
5.
Jain
,
A. K.
, and
Swamee
,
P. K.
,
1976
, “
Explicit Equation for Pipe Flow Problems
,”
J. Hydr. Div.
,
102
(
5
), pp.
657
664
.
6.
Serghides
,
T. K.
,
1984
, “
Estimate Friction Factor Accurately
,”
Chem. Eng.
,
91
(
5
), pp.
63
64
.
7.
Zigrang
,
D. J.
, and
Sylvester
,
N. D.
,
1982
, “
Explicit Approximations to the Colebrook's Friction Factor
,”
AIChE J.
,
28
(
3
), pp.
514
521
.10.1002/aic.690280323
8.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem.Fundam.
,
18
(
3
), pp.
296
297
.10.1021/i160071a019
9.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction Roughened Pipes
,”
Proc. R. Soc. London, Ser. A
,
161
(
906
), pp.
367
381
.10.1098/rspa.1937.0150
10.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
11.
Barr
,
D. I. H.
,
1982
, “
Solutions of the Colebrook-White Functions for Resistance to Uniform Turbulent Flows
,”
Proc. Inst. Civ. Eng., Part 2. Res. Theory
,
71
, pp.
473
475
.10.1680/iicep.1982.1713
12.
Manadilli
,
G.
,
1977
, “
Replace Implicit Equations With Sigmoidal Functions
,”
Chem. Eng.
,
104
(
8
), pp.
129
132
.
13.
Souza
,
A. L.
,
Chato
,
J. C.
,
Jabardo
,
J. M. S.
,
Wattelet
,
J. P.
,
Panek
,
J.
,
Christoffersen
,
B.
, and
Rhines
,
N.
,
1992
, “
Pressure Drop During Two-Phase Flow of Refrigerants in Horizontal Smooth Tubes
,” Air Conditioning and Refrigeration Center, University of Illinois, Urbana, IL, Technical Report.
14.
Carey
,
V. P.
,
2008
,
Liquid Vapor Phase-Change Phenomena
, second ed.,
Taylor and Francis
,
New York
.
15.
Piexoto
,
R. A.
, and
Bullard
,
C. W.
,
1944
, “
A Design Model for Capillary Tube-Suction Line Heat Exchangers
,” Air Conditioning and Refrigeration Center, University of Illinois, Urbana, IL, Technical Report.
16.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiator of the Tubular Type
,”
Univ. Calif. Publ. Eng.
,
2
, pp.
443
46
.
17.
Bansal
,
P. K.
, and
Rupsinghe
,
A. S.
,
1998
, “
An Homogenous Model For Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
,
18
(
3–4
), pp.
207
219
.10.1016/S1359-4311(97)00016-1
18.
Escanes
,
F.
,
Perez-Segarra
,
C. D.
, and
Oliva
,
A.
,
1995
, “
Numerical Simulation of Capillary-Tube Expansion Devices
,”
Int. J. Refrig.
,
18
(
2
), pp.
113
122
.10.1016/0140-7007(95)93894-P
19.
Garcia-Valladares
,
O.
,
Perez-Segarra
,
C. D.
, and
Oliva
,
A.
,
2002
, “
Numerical Simulation of Capillary Tube Expansion Devices Behaviour With Pure and Mixed Refrigerants. Part I: Mathematical Formulation and Numerical Modeling
,”
Appl. Therm. Eng.
,
22
, pp.
173
182
.10.1016/S1359-4311(01)00074-6
20.
Garcia-Valladares
,
O.
,
Perez-Segarra
,
C. D.
, and
Oliva
,
A.
,
2002
, “
Numerical Simulation of Capillary Tube Expansion Devices Behaviour With Pure and Mixed Refrigerants. Part II: Experimental Validation and Parametric Studies
,”
Appl. Therm. Eng.
,
22
, pp.
379
391
.10.1016/S1359-4311(01)00097-7
21.
Choi
,
J.
,
Kim
,
Y.
, and
Kim
,
H. Y.
,
2003
, “
A Generalized Correlation for Refrigerant Mass Flow Rate Through Adiabatic Capillary Tubes
,”
Int. J. Refrig.
,
26
, pp.
881
888
.10.1016/S0140-7007(03)00079-3
22.
Akintunde
,
M. A.
,
2007
, “
The Effects of Friction Factors on Capillary Tube Length
,”
Pac. J. Sci. Technol.
,
8
(
2
), pp.
238
245
.
23.
Hermes
,
C. J. L.
,
Melo
,
C.
, and
Goncalves
,
J. M.
,
2008
, “
Modeling of Non-Adiabatic Capillary Tubes: A Simplified Approach and Comprehensive Experimental Validation
,”
Int. J. Refrig.
,
31
, pp.
1358
1367
.10.1016/j.ijrefrig.2008.04.002
24.
Kim
,
L. S.
,
Son
,
K.
, and
Sarker
,
D.
,
2011
, “
An Assessment of Models for Predicting Refrigerant Characteristics in Adiabatic and Non-Adiabatic Capillary Tubes
,”
Heat Mass Transfer
,
47
, pp.
163
180
.10.1007/s00231-010-0697-0
25.
Dukler
,
A. E.
,
Wicks
,
M.
, and
Cleveland
,
R. G.
,
1964
, “
Pressure Drop and Hold-Up in Two-Phase Flow—Part A: A Comparison of Existing Correlations
,”
AIChE J.
,
10
, pp.
38
43
.10.1002/aic.690100117
26.
Dukler
,
A. E.
,
Wicks
,
M.
, and
Cleveland
,
R. G.
,
1964
, “
Pressure Drop and Hold-Up in Two-Phase Flow—Part B: An Approach Through Similarity Analysis
,”
AIChE J.
,
10
, pp.
44
51
.10.1002/aic.690100118
27.
Corradini
,
M. L.
,
1997
,
Fundamentals of Multiphase Flow
,
University of Wisconsin
,
Madison, WI
.
You do not currently have access to this content.