A time-periodic blowing/suction is provided to control turbulent separation in a boundary layer using direct numerical simulation. The blowing/suction is given just before the separation point, and its nondimensional forcing frequency ranges from F*= fLb/U = 0.28–8.75, where f is the forcing frequency, Lb is the streamwise length of uncontrolled separation bubble, and U is the freestream velocity. The size of separation bubble is minimum at F*= 0.5. At low forcing frequencies of F*≤ 0.5, vortices generated by the forcing travel downstream at convection velocity of 0.32–0.35 U, bring high momentum toward the wall, and reduce the size of separation bubble. However, at high forcing frequencies of F*≥ 1.56, flow separation disappears and appears in time during the forcing period. This phenomenon occurs due to high wall-pressure gradients alternating favorably and adversely in time. A potential flow theory indicates that this rapid change of the wall pressure in time occurs through an inviscid mechanism. Finally, it is shown that this high-frequency forcing requires a large control input power due to high pressure work.

References

1.
Simpson
,
R. L.
,
1989
, “
Turbulent Boundary-Layer Separation
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
205
232
.
2.
Simpson
,
R. L.
,
1995
, “
Aspects of Turbulent Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
32
(
5
), pp.
457
521
.
3.
Gad-el-Hak
,
M.
,
2000
,
Flow Control: Passive, Active and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, UK
.
4.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
113
139
.
5.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.
6.
Seifert
,
A.
,
Bachar
,
T.
,
Koss
,
D.
,
Shepshelovich
,
M.
, and
Wygnanski
,
I.
,
1993
, “
Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation
,”
AIAA J.
,
31
(
11
), pp.
2052
2060
.
7.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
503
529
.
8.
Glezer
,
A.
,
2011
, “
Some Aspects of Aerodynamic Flow Control Using Synthetic-Jet Actuation
,”
Philos. Trans. R. Soc., A.
,
369
(
1940
), pp.
1476
1494
.
9.
Leschziner
,
M. A.
, and
Lardeau
,
S.
,
2011
, “
Simulation of Slot and Round Synthetic Jets in the Context of Boundary-Layer Separation Control
,”
Philos. Trans. R. Soc., A
,
369
(
1940
), pp.
1495
1512
.
10.
Seifert
,
A.
,
Darabi
,
A.
, and
Wygnanski
,
I.
,
1996
, “
Delay of Airfoil Stall by Periodic Excitation
,”
J. Aircr.
,
33
(
4
), pp.
691
698
.
11.
Seifert
,
A.
, and
Pack
,
L. G.
,
1999
, “
Oscillatory Control of Separation at High Reynolds Numbers
,”
AIAA J.
,
37
(
9
), pp.
1062
1071
.
12.
Amitay
,
M.
,
Smith
,
D. R.
,
Kibens
,
V.
,
Parekh
,
D. E.
, and
Glezer
,
A.
,
2001
, “
Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators
,”
AIAA J.
,
39
(
3
), pp.
361
370
.
13.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Role of Actuation Frequency in Controlled Flow Reattachment Over a Stalled Airfoil
,”
AIAA J.
,
40
(
2
), pp.
209
216
.
14.
You
,
D.
, and
Moin
,
P.
,
2008
, “
Active Control of Flow Separation Over an Airfoil Using Synthetic Jets
,”
J. Fluid. Struct.
,
24
(
8
), pp.
1349
1357
.
15.
Amitay
,
M.
,
Honohan
,
A.
,
Trautman
,
M.
, and
Glezer
,
A.
,
1997
, “
Modification of the Aerodynamic Characteristics of Bluff Bodies Using Fluidic Actuators
,”
AIAA
Paper No. 97-2004.
16.
Glezer
,
A.
,
Amitay
,
M.
, and
Honohan
,
A. M.
,
2005
, “
Aspects of Low-and High-Frequency Actuation for Aerodynamic Flow Control
,”
AIAA J.
,
43
(
7
), pp.
1501
1511
.
17.
Findanis
,
N.
, and
Ahmed
,
N. A.
,
2008
, “
The Interaction of an Asymmetrical Localised Synthetic Jet on a Side-Supported Sphere
,”
J. Fluid. Struct.
,
24
(
7
), pp.
1006
1020
.
18.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2010
, “
Effect of Novel Synthetic Jet on Wake Vortex Shedding Modes of a Circular Cylinder
,”
J. Fluid. Struct.
,
26
(
6
), pp.
900
917
.
19.
Chun
,
K. B.
, and
Sung
,
H. J.
,
1996
, “
Control of Turbulent Separated Flow Over a Backward-Facing Step by Local Forcing
,”
Exp. Fluids
,
21
(
6
), pp.
417
426
.
20.
Dejoan
,
A.
, and
Leschziner
,
M. A.
,
2004
, “
Large Eddy Simulation of Periodically Perturbed Separated Flow Over a Backward-Facing Step
,”
Int. J. Heat Fluid Flow
,
25
(
4
), pp.
581
592
.
21.
Dandois
,
J.
,
Garnier
,
E.
, and
Sagaut
,
P.
,
2007
, “
Numerical Simulation of Active Separation Control by a Synthetic Jet
,”
J. Fluid Mech.
,
574
, pp.
25
58
.
22.
Raju
,
R.
,
Mittal
,
R.
, and
Cattafesta
,
L.
,
2008
, “
Dynamics of Airfoil Separation Control Using Zero-Net Mass-Flux Forcing
,”
AIAA J.
,
46
(
12
), pp.
3103
3115
.
23.
Franck
,
J. A.
, and
Colonius
,
T.
,
2012
, “
Effects of Actuation Frequency on Flow Control Applied to a Wall-Mounted Hump
,”
AIAA J.
,
50
(
7
), pp.
1631
1634
.
24.
Kotapati
,
R. B.
,
Mittal
,
R.
,
Marxen
,
O.
,
Ham
,
F.
,
You
,
D.
, and
Cattafesta
,
L. N.
, III
,
2010
, “
Nonlinear Dynamics and Synthetic-Jet-Based Control of a Canonical Separated Flow
,”
J. Fluid Mech.
,
654
, pp.
65
97
.
25.
Na
,
Y.
, and
Moin
,
P.
,
1998
, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
374
, pp.
379
405
.
26.
Herbst
,
A. H.
, and
Henningson
,
D. S.
,
2006
, “
The Influence of Periodic Excitation on a Turbulent Separation Bubble
,”
Flow Turbul. Combust.
,
76
(
1
), pp.
1
21
.
27.
Kim
,
K.
,
Baek
,
S.
, and
Sung
,
H. J.
,
2002
, “
An Implicit Velocity Decoupling Procedure for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
38
(
2
), pp.
125
138
.
28.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
(
1
), pp.
1
4
.
29.
Beam
,
R. M.
, and
Warming
,
R. F.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
39
402
.
30.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
31.
Spalart
,
P. R.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer Up To Rθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
32.
Na
,
Y.
, and
Moin
,
P.
,
1998
, “
The Structure of Wall-Pressure Fluctuations in Turbulent Boundary Layers With Adverse Pressure Gradient and Separation
,”
J. Fluid Mech.
,
377
, pp.
347
373
.
33.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
34.
Clauser
,
F. H.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aerosp. Sci.
,
21
(
2
), pp.
91
108
.
35.
Kang
,
S.
, and
Choi
,
H.
,
2002
, “
Suboptimal Feedback Control of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
463
, pp.
201
227
.
You do not currently have access to this content.