The fluid dynamics of a microturbine system that is applied in a device for chemical and biological analysis—a so-called magic-angle spinning (MAS) probe—is investigated. The drive fluid is pressurized air at ambient temperature provided by nozzles aligned on an intake spiral, driving a Pelton-type microturbine. Computational fluid dynamics (CFD) simulations have been performed and compared with fluid dynamics measurements of the MAS system with 1.3 mm rotor diameter for spinning rates between 23kHz and 67kHz. The main optimization criteria of the MAS system are rotor speed and turbine stability and not primarily efficiency, which is standard for turbomachinery applications. In the frame of fabrication tolerances, a sensitivity study has been carried out by varying the nozzles diameter and the nozzle position relative to the rotor. The presented fluid dynamics study of the microturbine system includes the analysis of local fluid flow values such as velocity, temperature, pressure, and Mach number, as well as global quantities like forces and driven torque acting on the turbine. Comparison with the experimental results shows good agreement of the microturbine efficiency. Furthermore, the parameter study of the nozzle diameter reveals optimization potential for this high-speed microturbine system employing a smaller nozzle diameter.

References

1.
Sharp
,
K.
,
2013
, “
Editorial for the Special Issue on Microfluidics
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
020201
.
2.
Zhou
,
T.
,
Xu
,
Y.
,
Liu
,
Z.
, and
Joo
,
S. W.
,
2015
, “
An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091102
.
3.
Mäki
,
A.-J.
,
Hemmilä
,
S.
,
Hirvonen
,
J.
,
Girish
,
N. N.
,
Kreutzer
,
J.
,
Hyttinen
,
J.
, and
Kallio
,
P.
,
2014
, “
Modeling and Experimental Characterization of Pressure Drop in Gravity-Driven Microfluidic Systems
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021105
.
4.
Solovitz
,
S. A.
,
Zhao
,
J.
,
Xuem
,
W.
, and
Xu
,
J.
,
2013
, “
Uniform Flow Control for a Multipassage Microfluidic Sensor
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021101
.
5.
Lee
,
C.
,
Arslan
,
S.
,
Luc
,
G.
, and
Fréchette
,
L.
,
2008
, “
Design Principles and Measured Performance of Multistage Radial Flow Microturbomachinery at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111103
.
6.
Epstein
,
A.
, and
Senturia
,
S.
,
1997
, “
Macro Power From Micro Machinery
,”
Science
,
276
(
5316
), pp.
1211
1211
.
7.
Fréchette
,
L. G.
,
Lee
,
C.
,
Arslan
,
S.
, and
Liu
,
Y.-C.
,
2003
, “
Design of a Microfabricated Rankine Cycle Steam Turbine for Power Generation
,”
ASME
Paper No. IMECE2003-42082.
8.
Liamini
,
M.
,
Shahriar
,
H.
,
Vengallatore
,
S.
, and
Fréchette
,
L. G.
,
2011
, “
Design Methodology for a Rankine Microturbine: Thermomechanical Analysis and Material Selection
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
339
351
.
9.
Lee
,
C.
, and
Fréchette
,
L.
,
2011
, “
A Silicon Microturbopump for a Rankine-Cycle Power Generation Microsystem—Part I: Component and System Design
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
312
325
.
10.
Fréchette
,
L. G.
,
Jacobson
,
S.
,
Breuer
,
K.
,
Ehrich
,
F.
,
Ghodssi
,
R.
,
Khanna
,
R.
,
Wong
,
C.
,
Zhang
,
X.
,
Schmidt
,
M.
, and
Epstein
,
A. H.
,
2005
, “
High-Speed Microfabricated Silicon Turbomachinery and Fluid Film Bearings
,”
J. Microelectromech. Syst.
,
14
(
1
), pp.
141
152
.
11.
Ribaud
,
Y.
,
Dessornes
,
O.
,
Guidez
,
J.
,
Courvoisier
,
T.
,
Dumand
,
C.
,
Kozanecki
,
Z.
,
Helin
,
P.
,
Moal
,
P.
, and
Minotti
,
P.
,
2005
, “
The Experience Gained on the Ultra Microturbine: From Energetics to Component Bricks Studies
,”
Fifth International Workshop on Micro Nanotechnology for Power Generation and Energy Conversion Applications
,
PowerMEMS 2005
, Tokyo, Japan, Nov. 28–30, pp.
21
24
.https://www.researchgate.net/profile/Olivier_Dessornes/publication/229021811_The_experience_gained_on_the_ultra_microturbine_from_energetics_to_component_bricks_studies/links/09e41511355b189acb121106.pdf
12.
Philippon
,
B.
,
2001
, “
Design of a Film Cooled MEMS Micro Turbine
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/35488
13.
Dessornes
,
O.
,
Landais
,
S.
,
Valle
,
R.
,
Fourmaux
,
A.
,
Burguburu
,
S.
,
Zwyssig
,
C.
, and
Kozanecki
,
Z.
,
2013
, “
Advances in the Development of Micro-Turbine Engine at ONERA
,”
ASME
Paper No. GT2013-94005.
14.
Lin
,
S.
,
Daze
,
C.
,
Davis
,
M.
,
Cague
,
T.
,
LaRochelle
,
M.
,
Kidane
,
R.
,
Lessa
,
L.
,
Slate
,
D.
, and
Kozak
,
J.
,
2004
, “
Micro Turbine Development
,”
KGCOE-MD2004 Multi-Disciplinary Engineering Design Conference
,
Rochester, NY
, Paper No. MD2004-04013.
15.
Ernst
,
R.
,
Bodenhausen
,
G.
, and
Wokaun
,
A.
,
1990
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
,
Clarendon Press
,
Oxford, UK
.
16.
Keeler
,
J.
,
2007
,
Understanding NMR Spectroscopy
,
Wiley
,
Chichester, UK
.
17.
Blümich
,
B.
,
2005
,
Essential NMR: For Scientists and Engineers
,
Springer
,
Berlin
.
18.
Klinowski
,
J.
,
2005
,
New Techniques in Solid State NMR
, Vol.
246
,
Springer
,
Berlin
.
19.
Chan
,
J.
,
2012
,
Solid State NMR
,
Springer
,
Heidelberg, Germany
.
20.
Nieuwkoop
,
A.
,
Franks
,
W.
,
Rehbein
,
K.
,
Diehl
,
A.
,
Akbey
,
Ü.
, and
Engelke
,
F.
,
2015
, “
Sensitivity and Resolution of Proton Detected Spectra of a Deuterated Protein at 40 and 60 kHz Magic-Angle-Spinning
,”
J. Biomol. NMR
,
61
(
2
), pp.
161
171
.
21.
Kobayashi
,
T.
,
Mao
,
K.
,
Paluch
,
P.
,
Nowak-Krol
,
A.
,
Sniechowska
,
J.
,
Nishiyama
,
Y.
,
Gryko
,
D.
,
Potrzebowski
,
M.
, and
Pruski
,
M.
,
2013
, “
Study of Intermolecular Interactions in the Corrole Matrix by Solid-State NMR Under 100 kHz MAS and Theoretical Calculations
,”
Angew. Chem., Int. Ed.
,
52
(
52
), pp.
14108
14111
.
22.
Andreas
,
L.
,
Stanek
,
J.
,
Marchand
,
T. L.
,
Bertarello
,
A.
,
Paepe
,
D. C.-D.
,
Lalli
,
D.
,
Krejĉíková
,
M.
,
Doyen
,
C.
,
Öster
,
C.
,
Knott
,
B.
,
Wegner
,
S.
,
Engelke
,
F.
,
Felli
,
I. C.
,
Pierattelli
,
R.
,
Dixon
,
N. E.
,
Emsley
,
L.
,
Herrmann
,
T.
, and
Pintacuda
,
G.
,
2015
, “
Protein Residue Linking in a Single Spectrum for Magic-Angle Spinning NMR Assignment
,”
J. Biomol. NMR
,
62
(
3
), pp.
253
261
.
23.
Agarwal
,
V.
,
Penzel
,
S.
,
Szekely
,
K.
,
Cadalbert
,
R.
,
Testori
,
E.
,
Oss
,
A.
,
Past
,
J.
,
Samoson
,
A.
,
Ernst
,
M.
,
Böckmann
,
A.
, and
Meier
,
B. H.
,
2014
, “
De Novo 3D Structure Determination From Sub-Milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy
,”
Angew. Chem., Int. Ed.
,
53
(45), pp.
12253
12256
.
24.
Doty
,
F.
,
1996
, “
Solid State Probe Design
,”
Encyclopedia of Nuclear Magnetic Resonance
,
D.
Grant
, and
R.
Harris
, eds.,
Wiley
,
Chichester, UK
, pp.
4475
4485
.
25.
Samoson
,
A.
,
2002
, “
Extended Magic-Angle Spinning
,”
Encyclopedia of Nuclear Magnetic Resonance
, Vol.
9
,
D.
Grant
, and
R.
Harris
, eds.,
Wiley
,
Chichester, UK
, pp.
59
64
.
26.
Doty
,
F.
, and
Ellis
,
P.
,
1981
, “
Design of High-Speed Cylindrical NMR Sample Spinners
,”
Rev. Sci. Instrum.
,
52
(
12
), pp.
1868
1875
.
27.
Doty
,
F.
,
Miller
,
B.
,
Hosford
,
G.
,
Wilson
,
D.
,
Huanbo
,
W.
, and
Jones
,
J.
,
1991
, “
High Eciency Microturbine Technology
,” IECEC-91, Vol. 2, pp. 436–442.
28.
Matsuki
,
Y.
,
Ueda
,
K.
,
Idehara
,
T.
,
Ikeda
,
R.
,
Ogawa
,
I.
,
Nakamura
,
S.
,
Toda
,
M.
,
Anai
,
T.
, and
Fujiwara
,
T.
,
2012
, “
Helium-Cooling and Spinning Dynamic Nuclear Polarization for Sensitivity-Enhanced Solid-State NMR at 14 T and 30 K
,”
J. Magn. Reson.
,
225
, pp.
1
9
.
29.
Wilhelm
,
D.
,
Purea
,
A.
, and
Engelke
,
F.
,
2015
, “
Fluid Flow Dynamics in MAS Systems
,”
J. Magn. Reson.
,
257
, pp.
51
63
.
30.
Denton
,
J.
, and
Dawes
,
W.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
107
124
.
31.
Horlock
,
J.
, and
Denton
,
J.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
32.
Chen
,
N.
,
2010
,
Aerothermodynamics of Turbomachinery: Analysis and Design
,
Wiley
,
Singapore
.
33.
Logan
,
E.
, and
Roy
,
R.
,
2003
,
Handbook of Turbomachinery
,
Marcel Dekker
,
New York
.
34.
Hawthorne
,
W.
, and
Novak
,
R. A.
,
1969
, “
Aerodynamics of Turbomachinery
,”
Ann. Rev. Fluid Mech.
,
1
(
1
), pp.
341
366
.
35.
Wua
,
Y.
,
Shuhong
,
L.
,
Hua-Shu
,
D.
,
Shangfeng
,
W.
, and
Tiejun
,
C.
,
2012
, “
Numerical Prediction and Similarity Study of Pressure Fluctuation in a Prototype Kaplan Turbine and the Model Turbine
,”
Comput. Fluids
,
56
, pp.
128
142
.
36.
Bansal
,
K.
,
2010
,
A Textbook of Fluid Mechanics and Hydraulic Machines
,
Laxim Publications
,
New Delhi, India
.
37.
Agrawal
,
S.
,
2006
,
Fluid Mechanics and Machinery
,
Tata McGraw-Hill Publications
,
New Delhi, India
.
38.
Gosman
,
A.
,
1998
, “
Developments in Industrial Computational Fluid Dynamics
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
153
161
.
39.
Issa
,
R.
, and
Sadri
,
M.
,
1998
, “
Numerical Modeling of Unsteady Flow Through a Turbomachine Stage
,”
ASME
Paper No. 98-GT-253.
40.
Hillewaert
,
K.
, and
van den Braembussche
,
R.
,
2000
, “
Comparison of Frozen Rotor to Unsteady Calculations of Incompressible Turbomachinery Flow
,” 5th National Congress on Theoretical and Applied Mechanics, Louvain-la-Neuve, Belgium.http://hdl.handle.net/1854/LU-128901
41.
Vuorinen
,
V.
,
Keskinen
,
J.-P.
,
Duwig
,
C.
, and
Boersma
,
B.
,
2014
, “
On the Implementation of Low-Dissipative Runge–Kutta Projection Methods for Time Dependent Flows Using OpenFOAM®
,”
Comput. Fluids
,
93
, p. 153163.
42.
Fan
,
J.
,
Eves
,
J.
,
Thompson
,
V.
,
Toporov
,
N.
,
Copley
,
D.
, and
Mincher
,
A.
,
2011
, “
Computational Fluid Dynamic Analysis and Design Optimization of Jet Pumps
,”
Comput. Fluids
,
46
(
1
), pp.
212
217
.
43.
Lien
,
F.
, and
Kalitzin
,
G.
,
2001
, “
Computations of Transonic Flow With the v2–f Turbulence Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
53
61
.
44.
Dixon
,
S.
, and
Hall
,
C.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth Heinemann
,
Boston
.
You do not currently have access to this content.