The relationships between the sand grain roughness height (ks) in use with Nikuradse or Colebrook correlations for the roughness function (RF) and the internal pipe wall roughness element described by the root-mean-square (RMS) of the roughness profile (Rq) for turbulent flow in pipes are experimentally examined. Flow tests were conducted on a total of 13 commercial steel pipes of two sizes: 168.3 mm and 114.3 mm outer diameter (OD). The aim was to provide further insight into relationship between ks and Rq, for use with either RF correlations. The tests were conducted on high-pressure pipeline quality natural gas in the range of Reynolds number (based on pipe internal diameter) of 9 × 106–16 × 106. For commercial carbon steel pipes, the relationship between ks and Rq was found in the form ks=1.306Rq+0.078Rq2 and ks=2.294Rq (both ks and Rq in μm), for use with Colebrook and Nikuradse RF correlations, respectively. These correlations cover a wide range of Rq from 2.7 μm to 12.5 μm which is typically found in commercial carbon steel pipes. For stainless steel (SS) pipes, preliminary results indicate that other surface roughness profile parameters need to be employed to better define the values of ks for these types of commercial steel pipes.

References

1.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transitional Region Between Smooth and Rough Wall Laws
,”
J. Inst. Civ. Eng.
,
3
, pp.
133
156
.
2.
Langelandsvik
,
L. I.
,
Kunkel
,
J. K.
, and
Smits
,
A. J.
,
2008
, “
Flow in a Commercial Steel Pipe
,”
J. Fluid Mech.
,
595
, pp.
323
339
.
3.
ASME B46.1
,
2009
, “
Surface Texture, Surface Roughness, Waviness, and Lay
,”
American National Standard, ASME
,
New York
.
4.
ISO 4287
,
1997
, “
Geometrical Product Specifications—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters
,”
Standard by International Organization for Standardization
, Geneva, Switzerland.
5.
Shockling
,
M. A.
,
Allen
,
J. J.
, and
Smits
,
A. J.
,
2006
, “
Roughness Effects in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
564
, pp.
267
285
.
6.
McKeon
,
B. J.
,
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
2005
, “
A New Friction Factor Relationship for Fully Developed Pipe Flow
,”
J. Fluid Mech.
,
538
, pp.
429
443
.
7.
McKeon
,
B. J.
,
Swanson
,
C. J.
,
Zagarola
,
M. V.
,
Donnelly
,
R. J.
, and
Smits
,
A. J.
,
2004
, “
Friction Factors for Smooth Pipe Flow
,”
J. Fluid Mech.
,
511
, pp.
41
44
.
8.
Bradshaw
,
P.
,
2000
, “
A Note on Critical Roughness Height and Transitional Roughness
,”
Phys. Fluids
,
12
(
6
), pp.
1611
1614
.
9.
Kunkel
,
G. J.
,
Allen
,
J. J.
, and
Smits
,
A. J.
,
2007
, “
Further Support for Townsend's Reynolds Number Similarity Hypothesis in High Reynolds Number Rough-Wall Pipe Flow
,”
Phys. Fluids
,
19
(
5
), p.
055109
.
10.
Nikuradse
,
J.
,
1933
, Laws of Flow in Rough Pipes,
VDI Forschungsheft
, p.
361
[
NACA TM 1292
, November 1950].
11.
Hama
,
F. R.
,
1954
, “
Boundary-Layer Characteristics for Smooth and Rough Surfaces
,”
Trans. Soc. Naval Archit. Mar. Eng.
,
62
, pp.
333
358
.
12.
McKeon
,
B. J.
,
Li
,
J.
,
Jiang
,
W.
,
Morrison
,
J. F.
, and
Smits
,
A. J.
,
2004
, “
Further Observations on the Mean Velocity Distribution in Fully Developed Pipe Flow
,”
J. Fluid Mech.
,
501
, pp.
135
147
.
13.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London A
,
161
(
906
), pp.
367
378
.
14.
Afzal
,
N.
,
2007
, “
Friction Factor Directly From Transitional Roughness in a Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1255
1267
.
15.
Granville
,
P. S.
,
1987
, “
Three Indirect Methods for the Drag Characteristics of Arbitrary Rough Surfaces on Flat Plate
,”
J. Ship Res.
,
31
(
1
), pp.
70
77
.
16.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.
17.
Perry
,
A. E.
, and
Abell
,
C. J.
,
1977
, “
Asymptotic Similarity of Turbulence Structures in Smooth and Rough Walled Pipes
,”
J. Fluid Mech.
,
79
(04), pp.
785
799
.
18.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1986
, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
,
162
, pp.
69
98
.
19.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
.
20.
Karnik
,
U.
,
Bowles
,
E.
, and
Sloet
,
G.
,
2000
, “
Maintaining Facility Measurement Integrity: Efforts in Canada, USA and The Netherlands
,”
ASME
Paper No. FEDSM2000-11105.
21.
Karnik
,
U.
,
Studzinski
,
W.
,
Geerligs
,
J.
, and
Kowch
,
R.
,
1999
, “
Scale Up of the NOVA Flow Conditioner
,”
Fourth International Symposium on Fluid Flow Measurement
,
Denver, CO
.
22.
Karnik
,
U.
,
1995
, “
A Compact Orifice Meter/Flow Conditioner Package
,”
Third International Symposium on Fluid Flow Measurement
,
San Antonio, TX
, Mar. 20–22.
23.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2007
, “
The Rough-Wall Turbulent Boundary Layer From the Hydraulically Smooth to the Fully Rough Regime
,”
J. Fluid Mech.
,
580
, pp.
381
405
.
24.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Rose
,
W. B.
,
2012
, “
The Onset of Roughness Effects in the Transitionally Rough Regime
,”
Int. J. Heat Fluid Flow
,
35
, pp.
160
167
.
25.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
26.
Duan
,
Z.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
,
2012
, “
Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061201
.
You do not currently have access to this content.