A variety of skin-friction drag reduction (FDR) methods for turbulent boundary layer (TBL) flows are reviewed. Both passive and active methods of drag reduction are discussed, along with a review of the fundamental processes responsible for friction drag and FDR. Particular emphasis is given to methods that are applicable to external hydrodynamic flows where additives are diluted by boundary layer entrainment. The methods reviewed include those based on engineered surfaces (riblets, large eddy breakup devices (LEBUs), and superhydrophobic surfaces (SHS)), those based on additives (polymer injection and gas injection), and those based on morphological alterations in the boundary layer flow (air layers and partial cavity formation). A common theme for all methods is their disruption of one or more of the underlying physical processes responsible for the production of skin-friction drag in a TBL. Opportunities and challenges for practical implementation of FDR techniques are also discussed.

References

1.
Schultz
,
M. P.
,
Bendick
,
J. A.
,
Holm
,
E. R.
, and
Hertel
,
W. M.
,
2011
, “
Economic Impact of Biofouling on a Naval Surface Ship
,”
Biofouling: J. Bioadhes. Biofilm Res.
,
27
(
1
), pp.
87
98
.
2.
Holm
,
E. R.
,
2012
, “
Barnacles and Biofouling
,”
Int. Comput. Biol.
,
52
(
3
), pp.
348
355
.
3.
Spalart
,
P. R.
, and
McLean
,
J. D.
,
2011
, “
Drag Reduction: Enticing Turbulence, and Then an Industry
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1556
1569
.
4.
Klewicki
,
J. C.
,
2010
, “
Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
132
(
9
), p.
094001
.
5.
Jiménez
,
J.
,
2013
, “
Near-Wall Turbulence
,”
Phys. Fluids
25
(
10
), p.
101302
.
6.
Marusic
,
I.
, and
Adrian
,
R. J.
,
2013
, “
The Eddies and Scales of Wall Turbulence
,”
Turbulence
, by
P.
Davidson
,
Y.
Kaneda
, and
K. R.
Sreenivasan
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
176
220
.
7.
Jiménez
,
J.
, and
Kawahara
,
G.
,
2013
, “
Dynamics of Wall-Bounded Turbulence
,”
Turbulence
,
P.
Davidson
,
Y.
Kaneda
, and
K. R.
Sreenivasan
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
221
268
.
8.
Marusic
,
I.
,
McKeon
,
B. J.
,
Monkewitz
,
P. A.
,
Nagib
,
H. M.
,
Smits
,
A. J.
, and
Sreenivasan
,
K. R.
,
2010
, “
Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues
,”
Phys. Fluids
,
22
(
6
), p.
065103
.
9.
Smits
,
A. J.
,
McKeon
,
B. J.
, and
Marusic
,
I.
,
2011
, “
High Reynolds Number Wall Turbulence
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
353
375
.
10.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
11.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2014
, “
Roughness Effects on Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
26
(
10
), p.
101305
.
12.
Oweis
,
G. F.
,
Winkel
,
E. S.
,
Cutbirth
,
J. M.
,
Perlin
,
M.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
,
2010
, “
The Mean Velocity Profile of a Smooth Flat-Plate Turbulent Boundary Layer at High Reynolds Number
,”
J. Fluid Mech.
,
665
, pp.
357
381
.
13.
Schultz-Grunow
,
F.
,
1941
, “
New Frictional Resistance Law for Smooth Plates
,” NACA Technical Memorandum No. 17–18, pp.
1
24
.
14.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
Boston
.
15.
Chauhan
,
K. A.
,
Monkewitz
,
P. A.
, and
Nagib
,
H. M.
,
2009
, “
Criteria for Assessing Experiments in Zero Pressure Gradient Boundary Layers
,”
Fluid Dyn. Res.
,
41
(
2
), p.
021404
.
16.
Barenblatt
,
G. I.
,
1993
, “
Scaling Laws for Fully Developed Shear Flows. Part I. Basic Hypotheses and Analysis
,”
J. Fluid Mech.
,
248
, pp.
513
520
.
17.
George
,
W. K.
, and
Castillo
,
L.
,
1997
, “
Zero-Pressure-Gradient Turbulent Boundary Layer
,”
ASME Appl. Mech. Rev.
,
50
(
12
), pp.
689
729
.
18.
Klewicki
,
J.
,
Fife
,
P.
, and
Wei
,
T.
,
2009
, “
On the Logarithmic Mean Profile
,”
J. Fluid Mech.
,
638
, pp.
73
93
.
19.
Winkel
,
E. S.
,
Cutbirth
,
J. M.
,
Ceccio
,
S. L.
,
Perlin
,
M.
, and
Dowling
,
D. R.
,
2012
, “
Turbulence Profiles From a Smooth Flat-Plate Turbulent Boundary Layer at High Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
140
149
.
20.
Monkewitz
,
P. A.
,
Chauhan
,
K. A.
, and
Nagib
,
H. M.
,
2007
, “
Self-Consistent High-Reynolds-Number Asymptotics for Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
,
19
(
11
), p.
115101
.
21.
Nagib
,
H. M.
, and
Chauhan
,
K. A.
,
2008
, “
Variations of von Kármán Coefficient in Canonical Flows
,”
Phys. Fluids
20
(
10
), p.
101518
.
22.
Bourassa
,
C.
, and
Thomas
,
F. O.
,
2009
, “
An Experimental Investigation of a Highly Accelerated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
634
, pp.
359
404
.
23.
Coles
,
D. E.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(02), pp.
191
226
.
24.
Jiménez
,
J.
, and
Pinelli
,
A.
,
1999
, “
The Autonomous Cycle of Near-Wall Turbulence
,”
J. Fluid Mech.
,
389
, pp.
335
359
.
25.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.
26.
Nikuradse
,
J.
,
1933
, “
Laws of Flow in Rough Pipes
,” NACA Technical Memorandum No. 1292.
27.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transitional Regime Between Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
28.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Rose
,
W. B.
,
2012
, “
The Onset of Roughness Effects in the Transitionally Rough Regime
,”
Int. J. Heat Fluid Flow
,
35
, pp.
160
167
.
29.
Schlichtling
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
, pp.
652
654
.
30.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Reduction Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
.
31.
Choi
,
K.-S.
,
1989
, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid Mech.
,
208
, pp.
417
458
.
32.
Coustols
,
E.
, and
Savill
,
A. M.
,
1992
, “
Turbulent Skin-Friction Drag Reduction by Active and Passive Means
,” AGARD Report No. 786.
33.
Bushnell
,
D.
,
2003
, “
Aircraft Drag Reduction—A Review
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
217
(
1
), pp.
1
18
.
34.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1412
1427
.
35.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
, pp.
503
539
.
36.
Bechert
,
D. W.
,
Bruse
,
M.
, and
Hage
,
W.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
.
37.
Peet
,
Y.
, and
Sagaut
,
P.
,
2009
, “
Theoretical Prediction of Turbulent Skin Friction on Geometrically Complex Surfaces
,”
Phys. Fluids
,
21
(
10
), p.
105105
.
38.
Sasamori
,
M.
,
Mamori
,
H.
, and
Iwamoto
,
K.
,
2014
, “
Experimental Study on Drag-Reduction Effect Due to Sinusoidal Riblets in Turbulent Channel Flow
,”
Exp. Fluids
,
55
(
1828
), pp.
1
14
.
39.
Riley
,
J. J.
,
Gad-el-Hak
,
M.
, and
Metcalfe
,
R. W.
,
1988
, “
Compliant Coatings
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
393
420
.
40.
Gad-el-Hak
,
M.
,
2002
, “
Compliant Coatings for Drag Reduction
,”
Prog. Aerosp. Sci.
,
38
(
1
), pp.
77
99
.
41.
Fish
,
F. E.
, and
Lauder
,
G. V.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
193
224
.
42.
Kulik
,
V. M.
,
Poguda
,
I. S.
, and
Semenov
,
B. N.
,
1991
, “
Experimental Investigation of One-Layer Viscoelastic Coatings Action on Turbulent Friction and Wall Pressure Pulsations
,”
Recent Developments in Turbulence Management
,
K. S.
Choi
, ed.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
263
289
.
43.
Choi
,
K. S.
,
Yang
,
X.
,
Clayton
,
B. R.
,
Glover
,
T.
,
Atlar
,
M.
,
Semenov
,
B. N.
, and
Kulik
,
V. M.
,
1997
, “
Turbulent Drag Reduction Using Compliant Surfaces
,”
Proc. R. Soc. London, Ser. A
,
453
(
1965
), pp.
2229
2240
.
44.
Bandyopadhyay
,
P. R.
,
Henoch
,
C.
,
Hrubes
,
J. D.
,
Semenov
,
B. N.
,
Amirov
,
A. I.
,
Kulik
,
V. M.
,
Malyuga
,
A. G.
,
Choi
,
K.-S.
, and
Escudier
,
M. P.
,
2005
, “
Experiments on the Effects of Aging on Compliant Coating Drag Reduction
,”
Phys. Fluids
,
17
(
8
), p.
085104
.
45.
Wilkinson
,
P.
,
Anders
,
J. B.
,
Lazos
,
B. S.
, and
Bushnell
,
D. M.
,
1988
, “
Turbulent Drag Reduction Research at NASA Langley: Progress and Plans
,”
Int. J. Heat Fluid Flow
,
9
(
3
), pp.
266
277
.
46.
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
2006
, “
Direct Numerical Simulation of Large-Eddy-Break-Up Devices in a Boundary Layer
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
902
910
.
47.
Park
,
H.
,
An
,
N. H.
,
Hutchins
,
N.
,
Choi
,
K.-S.
,
Chun
,
H. H.
, and
Lee
,
I.
,
2011
, “
Experimental Investigation on the Drag Reducing Efficiency of the Outer-Layer Vertical Blades
,”
J. Mar. Sci. Technol.
,
16
(
4
), pp.
390
401
.
48.
Onda
,
T.
,
Shibuichi
,
S.
,
Satoh
,
N.
, and
Tsujii
,
K.
,
1996
, “
Super-Water-Repellent Fractal Surfaces
,”
Langmuir
,
12
(
9
), pp.
2125
2127
.
49.
Ma
,
M.
, and
Hill
,
R. M.
,
2006
, “
Superhydrophobic Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
193
202
.
50.
Roach
,
P.
,
Shirtcliffe
,
N. J.
, and
Newton
,
M. I.
,
2008
, “
Progress in Superhydrophobic Surface Development
,”
Soft Matter
,
4
(
2
), pp.
224
240
.
51.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2009
, “
Multiscale Effects and Capillary Interactions in Functional Biomimetic Surfaces for Energy Conversion and Green Engineering
,”
Philos. Trans. R. Soc. A
,
367
(
1893
), pp.
1511
1539
.
52.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), p.
103606
.
53.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.
54.
Henoch
,
C.
,
Krupenkin
,
T. N.
,
Kolodner
,
P.
,
Taylor
,
J. A.
,
Hodes
,
M. S.
,
Lyons
,
A. M.
,
Peguero
,
C.
, and
Breuer
,
K.
,
2006
, “
Turbulent Drag Reduction Using Superhydrophobic Surfaces
,”
AIAA
Paper No. 2006-3192.
55.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
(
8
), p.
085103
.
56.
Zhao
,
J.
,
Du
,
X.
, and
Shi
,
X.
,
2007
, “
Experimental Research on Friction Reduction With Superhydrophobic Surfaces
,”
J. Mar. Sci. Appl.
,
6
(
3
), pp.
58
61
.
57.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flows
,”
Phys. Fluids
,
25
(
2
), p.
025103
.
58.
Park
,
H.
,
Sun
,
G.
, and
Kim
,
C.
,
2014
, “
Superhydrophobic Turbulent Drag Reduction as a Function of Surface Grating Parameters
,”
J. Fluid Mech.
,
747
, pp.
722
734
.
59.
Bidkar
,
R. A.
,
Leblanc
,
L.
,
Kulkarni
,
A. J.
,
Bahadur
,
V.
,
Ceccio
,
S. L.
, and
Perlin
,
M.
,
2014
, “
Skin-Friction Drag Reduction in the Turbulent Regime Using Random-Textured Hydrophobic Surfaces
,”
Phys. Fluids
,
26
(
8
), p.
085108
.
60.
Min
,
T.
, and
Kim
,
J.
,
2004
, “
Effects of Hydrophobic Surface on Skin-Friction Drag
,”
Phys. Fluids
,
16
(
7
), pp.
L55
L58
.
61.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
First International Congress on Rheology
, Vol.
2
, pp.
135
141
.
62.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
367
387
.
63.
Liaw
,
G. C.
,
Zakin
,
J. L.
, and
Patterson
,
G. K.
,
1971
, “
Effects of Molecular Characteristics of Polymers on Drag Reduction
,”
AICHE J.
,
17
(
2
), pp.
391
397
.
64.
Hoyt
,
J. W.
,
1972
, “
Effects of Additives on Fluid Friction
,”
J. Basic Eng.
,
94
(
2
), pp.
258
285
.
65.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AICHE J.
,
21
(
4
), pp.
625
656
.
66.
Berman
,
N. S.
,
1978
Drag Reduction by Polymers
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
47
64
.
67.
Sellin
,
R. H. J.
,
Hoyt
,
J. W.
,
Pollert
,
J.
, and
Scrivener
,
O.
,
1982
, “
The Effect of Drag Reducing Additives on Fluid Flows and Their Industrial Applications: Part II. Basic Applications and Future Proposals
,”
J. Hydraul. Res.
,
20
(
3
), pp.
235
292
.
68.
McComb
,
W.
,
1990
,
The Physics of Fluid Turbulence
,
Oxford University Press
,
Oxford, UK
.
69.
Nieuwstadt
,
F. T. M.
, and
Den Toonder
,
J.
,
2001
, “
Drag Reduction by Additives: A Review
,”
Turbulence Structure and Motion
,
A.
Soldati
and
R.
Monti
, eds.,
Springer
,
New York
, pp.
269
316
.
70.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.
71.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S. G.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2004
, “
On the Coherent Drag-Reducing and Turbulence-Enhancing Behaviour of Polymers in Wall Flows
,”
J. Fluid Mech.
,
514
, pp.
271
280
.
72.
Zakin
,
J. L.
,
Lu
,
B.
, and
Bewersdorff
,
H.-W.
,
1998
, “
Surfactant Drag Reduction
,”
Rev. Chem. Eng.
,
14
(
4–5
), pp.
253
320
.
73.
Winkel
,
E. S.
,
Oweis
,
G. F.
,
Vanapalli
,
S. A.
,
Dowling
,
D. R.
,
Perlin
,
M.
,
Solomon
,
M. J.
, and
Ceccio
,
S. L.
,
2009
, “
High Reynolds Number Turbulent Boundary Layer Friction Drag Reduction From Wall-Injected Polymer Solutions
,”
J. Fluid Mech.
,
621
, pp.
259
288
.
74.
Vdovin
,
A. V.
, and
Smol'yakov
,
A. V.
,
1981
, “
Turbulent Diffusion of Polymers in a Boundary Layer
,”
J. Appl. Mech. Tech. Phys.
,
22
, pp.
526
531
.
75.
Petrie
,
H. L.
,
Brungart
,
T. A.
, and
Fontaine
,
A. A.
,
1996
, “
Drag Reduction on a Flat Plate at High Reynolds Number With Slot-Injected Polymer Solutions
,” ASME Paper No. FED-237, pp.
3
10
.
76.
Wu
,
J.
, and
Tulin
,
M. P.
,
1972
, “
Drag Reduction by Ejecting Additive Solutions Into Pure-Water Boundary Layer
,”
J. Basic Eng.
,
94
(
4
), pp.
749
754
.
77.
Fruman
,
D. H.
, and
Tulin
,
M. P.
,
1976
, “
Diffusion of a Tangential Drag-Reducing Polymer Injection on a Flat Plate at High Reynolds Numbers
,”
J. Ship Res.
,
20
(
3
), pp.
171
180
.
78.
Vdovin
,
A. V.
, and
Smol'yakov
,
A. V.
,
1978
, “
Diffusion of a Polymer Solution in a Turbulent Boundary Layer
,”
J. Appl. Mech. Tech. Phys.
,
19
(
2
), pp.
196
201
.
79.
Fontaine
,
A. A.
,
Petrie
,
H. L.
, and
Brungart
,
T. A.
,
1992
, “
Velocity Profile Statistics in a Turbulent Boundary Layer With Slot-Injected Polymer
,”
J. Fluid Mech.
,
238
, pp.
435
466
.
80.
Elbing
,
B. R.
,
Solomon
,
M. J.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2011
, “
Flow-Induced Degradation of Drag-Reducing Polymer Solutions Within a High-Reynolds Number Turbulent Boundary Layer
,”
J. Fluid Mech.
,
670
, pp.
337
364
.
81.
Elbing
,
B. R.
,
Dowling
,
D. R.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2010
, “
Diffusion of Drag-Reducing Polymer Solutions Within a Rough-Walled Turbulent Boundary Layer
,”
Phys. Fluids
,
22
(
4
), p.
045102
.
82.
Yang
,
J. W.
,
Park
,
H.
,
Chun
,
H. H.
,
Ceccio
,
S. L.
,
Perlin
,
M.
, and
Lee
,
I.
,
2014
, “
Development and Performance at High Reynolds Number of a Skin-Friction Reducing Marine Paint Using Polymer Additives
,”
Ocean Eng.
,
84
, pp.
183
193
.
83.
Patterson
,
R. W.
, and
Abernathy
,
F. H.
,
1970
, “
Turbulent Flow Drag Reduction and Degradation With Dilute Polymer Solutions
,”
J. Fluid Mech.
,
43
(
4
), pp.
689
710
.
84.
Vanapalli
,
S. A.
,
Ceccio
,
S. L.
, and
Solomon
,
M. J.
,
2006
, “
Universal Scaling for Polymer Chain Scission in Turbulence
,”
Proc. Natl. Acad. Sci.
,
103
(
45
), pp.
16660
16665
.
85.
Garwood
,
G. C.
,
Winkel
,
E. S.
,
Vanapalli
,
S.
,
Elbing
,
B.
,
Walker
,
D. T.
,
Ceccio
,
S. L.
,
Perlin
,
M.
, and
Solomon
,
M. J.
,
2005
, “
Drag Reduction by a Homogenous Polymer Solution in Large Diameter, High Shear Pipe Flow
,”
International Symposium on Drag Reduction
, Busan, Korea.
86.
Elbing
,
B. R.
,
Winkel
,
E. S.
,
Solomon
,
M. J.
, and
Ceccio
,
S. L.
,
2009
, “
Degradation of Homogeneous Polymer Solutions in High Shear Turbulent Pipe Flow
,”
Exp. Fluids
,
47
(
6
), pp.
1033
1044
.
87.
Ceccio
,
S. L.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.
88.
Perlin
,
M.
, and
Ceccio
,
S.
,
2014
,
Mitigation of Hydrodynamic Resistance: Methods to Reduce Hydrodynamic Drag
,
World Scientific Publishing
,
Singapore
.
89.
McCormick
,
M. E.
, and
Bhattacharyya
,
R.
,
1973
, “
Drag Reduction on a Submersible Hull by Electrolysis
,”
Nav. Eng. J.
,
85
(
2
), pp.
11
16
.
90.
Merkle
,
C. L.
, and
Deutsch
,
S.
,
1992
, “
Drag Reduction in Liquid Boundary Layers by Gas Injection
,”
Prog. Astronaut. Aeronaut.
,
123
, pp.
351
412
.
91.
Guin
,
M. M.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Maeda
,
M.
, and
Miyanaga
,
M.
,
1996
, “
Reduction of Skin Friction by Microbubbles and Its Relation With Near-Wall Bubble Concentration in a Channel
,”
J. Mar. Sci. Technol.
,
1
(
5
), pp.
241
254
.
92.
Kato
,
H.
,
Miura
,
K.
,
Yamaguchi
,
H.
, and
Miyanaga
,
M.
,
1998
, “
Experimental Study on Microbubble Ejection Method for Frictional Drag Reduction
,”
J. Mar. Sci. Technol.
,
3
(
3
), pp.
122
129
.
93.
Kodama
,
Y.
,
Kakugawa
,
A.
,
Takahashi
,
T.
, and
Kawashima
,
H.
,
2000
, “
Experimental Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
582
588
.
94.
Moriguchi
,
Y.
, and
Kato
,
H.
,
2002
, “
Influence of Microbubble Diameter and Distribution on Frictional Resistance Reduction
,”
J. Mar. Sci. Technol.
,
7
(
2
), pp.
79
85
.
95.
Murai
,
Y.
,
Fukuda
,
H.
,
Oishi
,
Y.
,
Kodama
,
Y.
, and
Yamamoto
,
F.
,
2007
, “
Skin Friction Reduction by Large Air Bubbles in a Horizontal Channel Flow
,”
Int. J. Multiphase Flow
,
33
(
2
), pp.
147
163
.
96.
Murai
,
Y.
,
2014
, “
Frictional Drag Reduction by Bubble Injection
,”
Exp. Fluids
,
55
(
1077
), pp.
1
28
.
97.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
,
1985
, “
Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer
,”
J. Fluid Mech.
,
156
, pp.
237
256
.
98.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
,
1985
, “
Numerical Investigation Into the Mechanisms of Microbubble Drag Reduction
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
370
377
.
99.
Takahashi
,
T.
,
Kakugawa
,
A.
,
Makino
,
M.
, and
Kodama
,
Y.
,
2003
, “
Experimental Study on Scale Effect of Drag Reduction by Microbubbles Using Very Large Flat Plate Ships
,”
J. Kansai Soc. Nav. Arch. Jpn.
,
239
, pp.
11
20
.
100.
Sanders
,
W. C.
,
Winkel
,
E. S.
,
Dowling
,
D. R.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2006
, “
Bubble Friction Drag Reduction in a High-Reynolds-Number Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
552
, pp.
353
380
.
101.
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2004
, “
On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden With Microbubbles
,”
J. Fluid Mech.
,
503
, pp.
345
355
.
102.
Winkel
,
E. S.
,
Ceccio
,
S. L.
,
Dowling
,
D. R.
, and
Perlin
,
M.
,
2004
, “
Bubble Size Distributions Produced by Wall-Injection of Air Into Flowing Freshwater, Saltwater, and Surfactant Solutions
,”
Exp. Fluids
,
37
(
6
), pp.
802
810
.
103.
Shen
,
X.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2006
, “
Influence of Bubble Size on Micro-Bubble Drag Reduction
,”
Exp. Fluids
,
41
(
3
), pp.
415
424
.
104.
Elbing
,
B. R.
,
Winkel
,
E. S.
,
Lay
,
K. A.
,
Ceccio
,
S. L.
,
Dowling
,
D. R.
, and
Perlin
,
M.
,
2008
, “
Bubble-Induced Skin-Friction Drag Reduction and the Abrupt Transition to Air-Layer Drag Reduction
,”
J. Fluid Mech.
,
612
, pp.
201
236
.
105.
Elbing
,
B. R.
,
Makiharju
,
S.
,
Wiggins
,
A.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2013
, “
On the Scaling of Air Layer Drag Reduction
,”
J. Fluid Mech.
,
717
, pp.
484
513
.
106.
Hoang
,
C. L.
,
Toda
,
Y.
, and
Sanada
,
Y.
,
2009
, “
Full Scale Experiment for Frictional Resistance Reduction Using Air Lubrication Method
,”
19th International Offshore Polar Engineering Conference
, pp.
812
817
.
107.
Mizokami
,
S.
,
Kawakita
,
C.
,
Kodan
,
Y.
,
Takano
,
S.
,
Higasa
,
S.
, and
Shigenaga
,
R.
,
2010
, “
Experimental Study of Air Lubrication Method and Verification of Effects on Actual Hull by Means of Sea Trial
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
47
(
3
), pp.
41
47
.
108.
Makiharju
,
S.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2012
, “
On the Energy Economics of air Lubrication Drag Reduction
,”
Int. J. Nav. Arch. Ocean Eng.
,
4
(
4
), pp.
412
422
.
109.
Amromin
,
E.
, and
Mizine
,
I.
,
2003
, “
Partial Cavitation as Drag Reduction Technique and Problem of Active Flow Control
,”
Mar. Technol.
,
40
(
3
), pp.
181
188
.
110.
Matveev
,
K. I.
,
2003
, “
Technical Note on the Limiting Parameters of Artificial Cavitation
,”
Ocean Eng.
,
30
(
9
), pp.
1179
1190
.
111.
Lay
,
K. A.
,
Yakushiji
,
R.
,
Makiharju
,
S.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2010
, “
Partial Cavity Drag Reduction at High Reynolds Numbers
,”
J. Ship Res.
,
54
(
2
), pp.
109
119
.
112.
Makiharju
,
S.
,
Elbing
,
B. R.
,
Wiggins
,
A. D.
,
Schinasi
,
S.
,
Vanden-Broeck
,
J.-M.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2013
, “
On the Scaling of Air Entrainment From a Ventilated Partial Cavity
,”
J. Fluid Mech.
,
732
, pp.
47
76
.
113.
Kasagi
,
N.
,
Suzuki
,
Y.
, and
Fukagata
,
K.
,
2009
, “
Microelectromechanical Systems-Based Feedback Control of Turbulence for Skin Friction Reduction
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
231
251
.
114.
Yoon
,
H. S.
,
El-Samni
,
O. A.
, and
Chun
,
H. H.
,
2006
, “
Drag Reduction in Turbulent Channel Flow With Periodically Arrayed Heating and Cooling Strips
,”
Phys. Fluids
,
18
(
2
), p.
025104
.
115.
Kametani
,
Y.
, and
Fukagata
,
K.
,
2012
, “
Direct Numerical Simulation of Spatially Developing Turbulent Boundary Layer for Skin Friction Drag Reduction by Wall Surface-Heating or Cooling
,”
J. Turbul.
,
13
(
34
), pp.
1
20
.
116.
Berger
,
T. W.
,
Kim
,
J.
,
Lee
,
C.
, and
Lim
,
J.
,
2000
, “
Turbulent Boundary Layer Control Utilizing the Lorentz Force
,”
Phys. Fluids
,
12
(
3
), pp.
631
649
.
117.
Mamori
,
H.
, and
Fukagata
,
K.
,
2011
, “
Drag Reduction by Streamwise Traveling Wave-Like Lorenz Force in Channel Flow
,”
J. Phys. Conf. Ser.
,
318
, p.
022030
.
118.
Simpson
,
R. L.
,
Moffat
,
R. J.
, and
Kays
W. M.
,
1969
, “
The Turbulent Boundary Layer on a Porous Plate: Experimental Skin Friction With Variable Injection and Suction
,”
Int. J. Heat Mass Transfer
,
12
(
7
), pp.
771
789
.
119.
Antonia
,
R. A.
,
Zhu
,
Y.
, and
Sokolov
,
M.
,
1995
, “
Effect of Concentrated Wall Suction on a Turbulent Boundary Layer
,”
Phys. Fluids
,
7
(
10
), pp.
2465
2474
.
120.
Bewley
,
T. R.
, and
Aamo
,
O. L.
,
2014
, “
A ‘Win–Win’ Mechanism for Low-Drag Transients in Controlled Two-Dimensional Channel Flow and Its Implications for Sustained Drag Reduction
,”
J. Fluid Mech.
,
499
, pp.
183
196
.
121.
Min
,
T.
,
Kang
,
S. M.
,
Speyer
,
J. L.
, and
Kim
,
J.
,
2006
, “
Sustained Sub-Laminar Drag in a Fully Developed Channel Flow
,”
J. Fluid Mech.
,
558
, pp.
309
318
.
122.
Choi
,
K.-S.
,
DeBisschop
,
J.-R.
, and
Clayton
,
B. R.
,
1998
, “
Turbulent Boundary-Layer Control by Means of Spanwise-Wall Oscillation
,”
AIAA J.
,
36
(
7
), pp.
1157
1163
.
123.
Baron
,
A.
, and
Quadrio
,
M.
,
1996
, “
Turbulent Drag Reduction by Spanwise Wall Oscillations
,”
Appl. Sci. Res.
,
55
(
4
), pp.
311
326
.
124.
Fukagata
,
K.
,
2011
, “
Drag Reduction by Wavy Surfaces
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
2
13
.
125.
Tomiyama
,
N.
, and
Fukagata
,
K.
,
2013
, “
Direct Numerical Simulation of Drag Reduction in a Turbulent Channel Flow Using Spanwise Traveling Wave-Like Wall Deformation
,”
Phys. Fluids
,
25
(
10
), p.
105115
.
126.
Itoh
,
M.
,
Tamano
,
S.
,
Yokota
,
K.
, and
Taniguchi
,
S.
,
2006
, “
Drag Reduction in a Turbulent Boundary Layer on a Flexible Sheet Undergoing a Spanwise Traveling Wave Motion
,”
J. Turbul.
,
7
(
27
), p.
N27
.
127.
Tamano
,
S.
, and
Itoh
,
M.
,
2012
, “
Drag Reduction in Turbulent Boundary Layers by Spanwise Traveling Waves With Wall Deformation
,”
J. Turbul.
,
13
, p.
N9
.
128.
Nieuwstadt
,
F. T. M.
,
Wolthers
,
W.
,
Leijdens
,
H.
,
Prasad
,
K.
, and
Schwarz-van Manen
,
A.
,
1993
, “
The Reduction of Skin Friction by Riblets Under the Influence of an Adverse Pressure Gradient
,”
Exp. Fluids
,
15
, pp.
17
26
.
129.
Clark
,
H.
, and
Deutsch
,
S.
,
1991
, “
Microbubble Skin Friction Reduction on an Axisymmetric Body Under the Influence of Applied Axial Pressure Gradients
,”
Phys. Fluids
,
3
(
12
), pp.
2948
2954
.
You do not currently have access to this content.