By combining a physical model and sensor outputs in an inverse transport-diffusion-reaction strategy, an accurate concentration cartography may be obtained. The paper addresses the influence of discretization errors, flow uncertainties, and measurement noise on the concentration field reconstruction process. We consider a key element of a drinking water network, i.e., a pipe junction, where Reynolds and Peclet numbers are approximately 2000 and 1000, respectively. We show that a 10% error between the reference concentration field and the reconstructed concentration field may be obtained using a coarse discretization. Nevertheless, to keep the error below 10%, a fine concentration discretization is required. We also detail the influence of the flow approximation on the concentration reconstruction process. The flow modeling error obtained when the exact Navier–Stokes flow is approximated by a Stokes flow may lead to a 40% error in the reconstructed concentration. However, if the flow field is obtained from the full set of Navier–Stokes equations, we show that the error may be less than 5%. Then, we observe that the quality of the reconstructed concentration field obtained with the proposed inverse technique is not deteriorated when sensor outputs have a normal distribution noise variance of few percents. Finally, a good engineering practice would be to stop the reconstruction process according to an extended discrepancy principle including modeling and measurement errors. As shown in the paper, the quality of the reconstructed field declines after reaching the threshold of the modeling error.

References

1.
Podvin
,
B.
,
Fraigneau
,
Y.
,
Lusseyran
,
F.
, and
Gougat
,
F.
,
2006
, “
A Reconstruction Method for the Flow Past an Open Cavity
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
531
540
.
2.
Waeytens
,
J.
,
Chatellier
,
P.
, and
Bourquin
,
F.
,
2015
, “
Inverse Computational Fluid Dynamics: Influence of Discretization and Model Errors on Flows in Water Network Including Junctions
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091401
.
3.
Zhang
,
L.
,
Constantinescu
,
E.-M.
,
Sandu
,
A.
,
Tang
,
Y.
,
Chai
,
T.
,
Carmichael
,
G.-R.
,
Byun
,
D.
, and
Olaguer
,
E.
,
2008
, “
An Adjoint Sensitivity Analysis and 4D-Var Data Assimilation Study of Texas Air Quality
,”
Atmos. Environ.
,
42
(
23
), pp.
5787
5804
.
4.
Kang
,
D.
, and
Lansey
,
K.
,
2009
, “
Real-Time Demand Estimation and Confident Limit Analysis for Water Distribution Systems
,”
J. Hydraul. Eng.
,
135
(
10
), pp.
825
837
.
5.
Waeytens
,
J.
,
Chatellier
,
P.
, and
Bourquin
,
F.
,
2013
, “
Sensitivity of Inverse Advection-Diffusion-Reaction to Sensor and Control: A Low Computational Cost Tool
,”
Comput. Math. Appl.
,
66
(
6
), pp.
1082
1103
.
6.
Lions
,
J.-L.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
,
Springer
, New York.
7.
Wacholder
,
E.
, and
Dayan
,
J.
,
1984
, “
Application of the Adjoint Sensitivity Method to the Analysis of a Supersonic Ejector
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
425
429
.
8.
Becker
,
R.
, and
Rannacher
,
R.
,
2001
, “
An Optimal Control Approach to a Posteriori Error Estimation in Finite Elements Methods
,”
Acta Numerica
,
10
, pp.
1
102
.
9.
Waeytens
,
J.
,
Chamoin
,
L.
, and
Ladeveze
,
P.
,
2012
, “
Guaranteed Error Bounds on Pointwise Quantities of Interest for Transient Viscodynamics Problems
,”
Comput. Mech.
,
49
(
3
), pp.
291
307
.
10.
Chamoin
,
L.
,
Ladeveze
,
P.
, and
Waeytens
,
J.
,
2014
, “
Goal-Oriented Updating of Mechanical Models Using the Adjoint Framework
,”
Comput. Mech.
,
54
(
6
), pp.
1415
1430
.
11.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
12.
Lei
,
J.
, and
He
,
J.
,
2015
, “
Adjoint-Based Aerodynamic Shape Optimization for Low Reynolds Number Airfoils
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021401
.
13.
Papoutsis-Kiachagias
,
E.-M.
, and
Giannakoglou
,
K.-C.
,
2016
, “
Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications
,”
Arch. Comput. Methods Eng.
,
23
(
2
), pp.
255
299
.
14.
Munavalli
,
G.
, and
Mohan Kumar
,
M.
,
2003
, “
Water Quality Parameter Estimation in a Steady State Distribution System
,”
J. Water Resour. Plann. Manage.
,
192
(
2
), pp.
124
134
.
15.
Fabrie
,
P.
,
Gancel
,
G.
,
Mortazavi
,
I.
, and
Piller
,
O.
,
2010
, “
Quality Modeling of Water Distribution Systems Using Sensitivity Equations
,”
Hydraulic Eng.
,
136
(
1
), pp.
34
44
.
16.
Ito
,
K.
, and
Ravindran
,
S.-S.
,
1998
, “
A Reduced-Order Method for Simulation and Control of Fluid Flows
,”
J. Comput. Phys.
,
143
(
2
), pp.
403
425
.
17.
Prud'homme
,
C.
,
Rovas
,
D.
,
Veroy
,
K.
,
Machiels
,
L.
,
Maday
,
Y.
,
Patera
,
A. T.
, and
Turinici
,
G.
,
2002
, “
Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced Basis Output Bound Methods
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
70
80
.
18.
Besem
,
F.-M.
,
Kamrass
,
J.-D.
,
Thomas
,
J.-P.
,
Tang
,
D.
, and
Kielb
,
R.-E.
,
2016
, “
Vortex-Induced Vibration and Frequency Lock-In of Airfoil at High Angles of Attack
,”
ASME J. Fluids Eng.
,
138
(
1
), pp.
1415
1430
.
19.
Patnaik
,
G.
,
Boris
,
J.
,
Young
,
T.
, and
Grinstein
,
F.
,
2007
, “
Large Scale Urban Contaminant Transport Simulations With Miles
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1524
1532
.
20.
Rossman
,
L.
,
2000
, “
EPANET Users' Manual
,” U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH,
Document No. EPA/600/R-00/057
.
21.
Blokker
,
E.
,
Vreeburg
,
J.
,
Buchberger
,
S.
, and
van Dijk
,
J.
,
2008
, “
Importance of Demand Modelling in Network Water Quality Models: A Review
,”
Drinking Water Eng. Sci. Discuss.
,
1
(
1
), pp.
1
20
.
22.
Formaggia
,
L.
,
Gerbeau
,
J.-F.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2001
, “
On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
6–7
), pp.
561
582
.
23.
Jonkergouw
,
P.
,
Khu
,
S.
,
Kapelan
,
Z.
, and
Savic
,
D.
,
2008
, “
Water Quality Model Calibration Under Unknown Demands
,”
J. Water Resour. Plann. Manage.
,
134
(
4
), pp.
326
336
.
24.
Vreeburg
,
J.
, and
Boxall
,
J.
,
2007
, “
Discolouration in Potable Water Distribution Systems: A Review
,”
Water Res.
,
41
(
3
), pp.
519
529
.
25.
Hecht
,
F.
,
2012
, “
New Development in Freefem++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.
26.
Vasconselos
,
J.
,
Rossman
,
L.
,
Grayman
,
W.
,
Boulos
,
P.
, and
Robert
,
M.
,
1997
, “
Kinetics of Chlorine Decay
,”
J. Am. Water Works Assoc.
,
89
(
7
), pp.
54
65
.
27.
Wu
,
Z.
, and
Chen
,
G.
,
2014
, “
Approach to Transverse Uniformity of Concentration Distribution of a Solute in a Solvent Flowing Along a Straight Pipe
,”
J. Fluid Mech.
,
740
, pp.
196
213
.
28.
Pironneau
,
O.
,
Liou
,
J.
, and
Tezduyar
,
T.
,
1992
, “
Characteristic Galerkin and Galerkin Least Squares Space-Time Formulations for the Advection-Diffusion Equation With Time Dependent Domain
,”
Comput. Methods Appl. Mech. Eng.
,
100
(
1
), pp.
117
141
.
29.
Rossman
,
L. A.
,
Clark
,
R. M.
, and
Grayman
,
W. M.
,
1994
, “
Modeling Chlorine Residuals in Drinking-Water Distribution Systems
,”
J. Environ. Eng.
,
120
(
4
), pp.
803
820
.
30.
Morozov
,
V. A.
,
1966
, “
On the Solution of Functional Equations by the Method of Regularization
,”
Soviet Math. Dokl.
,
7
(1), pp.
414
417
.
31.
Munavalli
,
G.
, and
Mohan Kumar
,
M.
,
2005
, “
Water Quality Parameter Estimation in a Distribution System Under Dynamic State
,”
Water Res.
,
39
(
18
), pp.
4287
4298
.
You do not currently have access to this content.