The interaction between multiple laminar thin vortex rings and solid surfaces was studied numerically so as to investigate flow patterns associated with near-wall flow structures. In this study, the vortex–wall interaction was used to investigate the tendency of the flow toward recirculatory behavior and to assess the near-wall flow conditions. The numerical model shows very good agreement with previous studies of single vortex rings for the case of orthogonal impact (angle of incidence, θ = 0 deg) and oblique impact (θ = 20 deg). The study was conducted at Reynolds numbers 585 and 1170, based on the vortex ring radius and convection velocity. The case of two vortex rings was also investigated, with particular focus on the interaction of vortex structures postimpact. Compared to the impact of a single ring with the wall, the interaction between two vortex rings and a solid surface resulted in a more highly energized boundary layer at the wall and merging of vortex structures. The azimuthal variation in the vortical structures yielded flow conditions at the wall likely to promote agitation of ground based particles.

References

1.
Reynolds
,
O.
,
1876
, “
On the Resistance Encountered by Vortex Rings and the Relation Between Vortex Rings and the Stream-Lines of a Disc
,”
Nature
,
14
, pp.
477
479
.
2.
Rogers
,
W. B.
,
1858
, “
On the Formation of Rotating Rings by Air and Liquids Under Certain Conditions of Discharge
,”
Am. J. Sci.
,
26
(
2
), pp.
246
258
.
3.
Shariff
,
K.
, and
Leonard
,
A.
,
1992
, “
Vortex Rings
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
235
279
.
4.
Lim
,
T. T.
, and
Nickels
,
T. B.
,
1995
, “
Vortex Rings
,”
Fluid Vortices
, Vol. 30,
Springer
, The Netherlands, pp. 95–153.
5.
Meleshko
,
V. V.
,
2010
, “
Coaxial Axisymmetric Vortex Rings: 150 Years After Helmholtz
,”
Theor. Comput. Fluid Dyn.
,
24
(
1
), pp.
403
431
.
6.
Rood
,
E. P.
,
1994
, “
Interpreting Vortex Interactions With a Free Surface
,”
ASME J. Fluids Eng.
,
116
(
1
), pp.
91
94
.
7.
Weigand
,
A.
, and
Gharib
,
M.
,
1995
, “
Turbulent Vortex Ring/Free Surface Interaction
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
374
381
.
8.
Archer
,
P. J.
,
Thomas
,
T. G.
, and
Coleman
,
G. N.
,
2009
, “
The Instability of a Vortex Ring Impinging on a Free Surface
,”
J. Fluid Mech.
,
642
, pp.
79
94
.
9.
Cheng
,
M.
,
Lou
,
J.
, and
Lim
,
T. T.
,
2014
, “
A Numerical Study of a Vortex Ring Impacting a Permeable Wall
,”
Phys. Fluids
,
26
(
10
), p. 103602.
10.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
, Cambridge, UK.
11.
Walker
,
J. D. A.
,
Smith
,
C. R.
,
Cerra
,
A. W.
, and
Doligalski
,
T. L.
,
1987
, “
The Impact of a Vortex Ring on a Wall
,”
J. Fluid Mech.
,
181
, pp.
99
140
.
12.
Swearingen
,
J. D.
,
Crouch
,
J. D.
, and
Handler
,
R. A.
,
1995
, “
Dynamics and Stability of a Vortex Ring Impacting a Solid Boundary
,”
J. Fluid Mech.
,
297
, pp.
1
28
.
13.
Orlandi
,
P.
, and
Verzicco
,
R.
,
1993
, “
Vortex Rings Impinging on Walls: Axisymmetric and Three-Dimensional Simulations
,”
J. Fluid Mech.
,
256
, pp.
615
646
.
14.
Chu
,
C.-C.
,
Wang
,
C.-T.
, and
Hsieh
,
C.-S.
,
1993
, “
An Experimental Investigation of Vortex Motions Near Surfaces
,”
Phys. Fluids
,
5
(
3
), pp.
662
676
.
15.
Cheng
,
M.
,
Lou
,
J.
, and
Luo
,
L.-S.
,
2010
, “
Numerical Study of a Vortex Ring Impacting a Flat Wall
,”
J. Fluid Mech.
,
660
, pp.
430
455
.
16.
Verzicco
,
R.
, and
Orlandi
,
P.
,
1996
, “
Wall/Vortex-Ring Interactions
,”
ASME App. Mech. Rev.
,
49
(
10
), pp.
447
461
.
17.
Lim
,
T. T.
, and
Adhikari
,
D.
,
2015
, “
The Impact of a Vortex Ring on Porous Surfaces—A Review
,”
Vortex Rings and Jets: Recent Developments in Near-Field Dynamics
, Vol. 111,
Springer
, Singapore, pp.
33
60
.
18.
Lim
,
T. T.
,
1989
, “
An Experimental Study of a Vortex Ring Interacting With an Inclined Wall
,”
Exp. Fluids
,
7
(
7
), pp.
453
463
.
19.
Liu
,
C. H.
,
2002
, “
Vortex Simulation of Unsteady Shear Flow Induced by a Vortex Ring
,”
Comput. Fluids
,
31
(
2
), pp.
183
207
.
20.
Ghosh
,
D.
, and
Baeder
,
J. D.
,
2011
, “
Numerical Simulations of Vortex Ring Interactions With Solid Wall
,”
AIAA
Paper No. 2011-675.
21.
Cheng
,
M.
,
Lou
,
J.
, and
Lim
,
T. T.
,
2015
, “
Leapfrogging of Multiple Coaxial Viscous Vortex Rings
,”
Phys. Fluids
,
27
(
3
), p.
031702
.
22.
Chu
,
C.-C.
,
Wang
,
C.-T.
, and
Chang
,
C.-C.
,
1995
, “
A Vortex Ring Impinging on a Solid Plane Surface—Vortex Structure and Surface Force
,”
Phys. Fluids
,
7
(
6
), pp.
1391
1401
.
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
24.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
Berlin
.
25.
Sullivan
,
I. S.
,
Niemela
,
J. J.
,
Hershberger
,
R. E.
,
Bolster
,
D.
, and
Donnelly
,
R. J.
,
2008
, “
Dynamics of Thin Vortex Rings
,”
J. Fluid Mech.
,
609
, pp.
319
347
.
26.
Didden
,
N.
,
1979
, “
On the Formation of Vortex Rings: Rolling-Up and Production of Circulation
,”
J. App. Mech. Phys.
,
30
(1), pp.
101
116
.
27.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2004
, “
Fluid Entrainment by Isolated Vortex Rings
,”
J. Fluid Mech.
,
511
, pp.
311
331
.
28.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
29.
Perry
,
A. E.
, and
Chong
,
M. S.
,
1987
, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
125
155
.
30.
Delery
,
J. M.
,
2001
, “
Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.
31.
Verzicco
,
R.
, and
Orlandi
,
P.
,
1994
, “
Normal and Oblique Collisions of a Vortex Ring With a Wall
,”
Meccanica
,
29
(
4
), pp.
383
391
.
You do not currently have access to this content.