Owing to the limiting effect of energy, vortex rings cannot grow indefinitely and thus pinch off. In this paper, experiments on the vortex rings generated using a piston-cylinder apparatus are conducted so as to investigate the pinch-off mechanisms and identify the limiting effect of energy. Both theoretical and experimental results show that the generated vortex rings share a unified energy feature, regardless of whether they are pinched-off or not. Moreover, the unified energy feature is quantitatively described by a dimensionless energy number γ, defined as γ=(E/I2Γωmax) and exhibiting a critical value γring = 0.14 ± 0.01 for the generated vortex rings. This unified energy feature reflects the limiting effect of energy and specifies the target of vortex ring formation. Furthermore, based on the tendency of γ during vortex ring formation, criteria for determining the two timescales, i.e., pinch-off time and separation time, which correspond to the onset and end of pinch-off process, respectively, are suggested.

References

1.
Shariff
,
K.
, and
Leonard
,
A.
,
1992
, “
Vortex Rings
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
235
279
.
2.
Saffman
,
P. G.
,
1981
, “
Dynamics of Vorticity
,”
J. Fluid Mech.
,
106
, pp.
49
58
.
3.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.
4.
Dabiri
,
J. O.
,
2009
, “
Optimal Vortex Formation as a Unifying Principle in Biological Propulsion
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
17
33
.
5.
Ruiz
,
L. A.
,
Whittlesey
,
R. W.
, and
Dabiri
,
J. O.
,
2011
, “
Vortex-Enhanced Propulsion
,”
J. Fluid Mech.
,
668
, pp.
5
32
.
6.
Whittlesery
,
R. W.
, and
Dabiri
,
J. O.
,
2013
, “
Optimal Vortex Formation in a Self-Propelled Vehicle
,”
J. Fluid Mech.
,
737
, pp.
78
104
.
7.
Gao
,
L.
, and
Yu
,
S. C. M.
,
2010
, “
A Model for the Pinch-Off Process of the Leading Vortex Ring in a Starting Jet
,”
J. Fluid Mech.
,
656
, pp.
205
222
.
8.
Benjamin
,
T.
,
1976
, “
The Alliance of Practical and Analytical Insights Into the Nonlinear Problems of Fluid Mechanics
,”
Applications of Methods of Functional Analysis to Problems in Mechanics
, Vol.
503
, P Germain and B. Nayroles, eds., Springer, Berlin, pp.
8
28
.
9.
Kelvin
,
L.
,
1880
, “
Vortex Statics
,”
Philos. Mag.
,
10
(60), pp.
97
109
.
10.
Wang
,
X. X.
, and
Wu
,
Z. N.
,
2010
, “
Stroke-Averaged Lift Forces Due to Vortex Rings and Their Mutual Interactions for a Flapping Flight Model
,”
J. Fluid Mech.
,
654
, pp.
453
472
.
11.
Rayner
,
J. M. V.
,
1979
, “
A Vortex Theroy of Animal Flight—Part 1: The Vortex Wake of a Hovering Animal
,”
J. Fluid Mech.
,
91
(
4
), pp.
697
730
.
12.
Dickinson
,
M. H.
,
1996
, “
Unsteady Mechanism of Force Generation in Aquatic and Aerial Locomotion
,”
Am. Zool.
,
36
(
6
), pp.
537
554
.
13.
Maxworthy
,
T.
,
1977
, “
Some Experimental Studies of Vortex Rings
,”
J. Fluid Mech.
,
81
(
03
), pp.
465
495
.
14.
Didden
,
N.
,
1997
, “
On the Formation of Vortex Rings: Rolling-up and Production of Circulation
,”
Z. Angew. Math. Phys.
,
30
(1), pp.
101
116
.
15.
Lim
,
T. T.
,
1997
, “
A Note on the Leapfrogging Between Two Coaxial Vortex Rings at Low Reynolds Numbers
,”
Phys. Fluids.
,
9
(
1
), pp.
239
241
.
16.
Sullivan
,
I. S.
,
Niemela
,
J. J.
,
Hershberger
,
R. E.
,
Bolster
,
D.
, and
Donnelly
,
R. J.
,
2008
, “
Dynamics of Thin Vortex Rings
,”
J. Fluid Mech.
,
609
, pp.
319
347
.
17.
Chen
,
B.
,
Wang
,
Z. W.
,
Li
,
G. J.
, and
Wang
,
Y. C.
,
2015
, “
Experimental Investigation of the Evolution and Head-on Collision of Elliptic Vortex Rings
,”
ASME J. Fluid Eng.
,
138
(
3
), p.
031203
.
18.
Weigand
,
A.
, and
Gharib
,
M.
,
1995
, “
Turbulent Vortex Ring/Free Surface Interaction
,”
ASME J. Fluid Eng.
,
117
(
3
), pp.
374
381
.
19.
Shaffman
,
P. G.
,
1970
, “
The Velocity of Viscous Vortex Rings
,”
Stud. Appl. Math.
,
49
(
4
), pp.
371
380
.
20.
Weigand
,
A.
, and
Gharib
,
M.
,
1997
, “
On the Evolution of Laminar Vortex Rings
,”
Exp. Fluids.
,
22
(
6
), pp.
447
3457
.
21.
Fraenkel
,
L. E.
,
1972
, “
Example of Steady Vortex Rings of Small Cross-Section in an Ideal Fluid
,”
J. Fluid Mech.
,
51
(1), pp.
119
135
.
22.
Krueger
,
P. S.
,
2005
, “
An Over-Pressure Correction to the Slug Model for Vortex Ring Circulation
,”
J. Fluid Mech.
,
545
, pp.
427
443
.
23.
Rosenfeld
,
M.
,
Katija
,
K.
, and
Dabiri
,
J. O.
,
2009
, “
Circulation Generation and Vortex Ring Formation by Conic Nozzles
,”
ASME J. Fluid Eng.
,
131
(
9
), p.
091204
.
24.
Bourne
,
K.
,
Wahono
,
S.
, and
Ooi
,
A.
,
2017
, “
Numerical Investigation of Vortex Ring Ground Plane Interactions
,”
ASME J. Fluid Eng.
,
139
(
7
), p.
071105
.
25.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2005
, “
The Role of Optimal Vortex Formation in Biological Fluid Transport
,”
Proc. R. Soc. B.
,
272
(
1572
), pp.
1557
1560
.
26.
Dabiri
,
J. O.
,
Colin
,
S. P.
,
Costello
,
J. H.
, and
Gharib
,
M.
,
2005
, “
Flow Patterns Generated by Oblate Medusan Jellyfish: Field Measurements and Laboratory Analyses
,”
J. Exp. Biol.
,
208
(
7
), pp.
1257
1265
.
27.
Costello
,
J. H.
,
Colin
,
S. P.
, and
Dabiri
,
J. O.
,
2008
, “
Medusan Morphospace: Phylogenetic Constraints, Biomechanical Solutions, and Ecological Consequences
,”
Invertebr. Biol.
,
127
(
3
), pp.
265
290
.
28.
Shusser
,
M.
,
Rosenfeld
,
M.
,
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2006
, “
Effect of Time-Dependent Piston Velocity Program on Vortex Ring Formation in a Piston/Cylinder Arrangement
,”
Phys. Fluids
,
18
, p.
033601
.
29.
Krueger
,
P. S.
,
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2006
, “
The Formation Number of Vortex Rings Formed in Uniform Background Co-Flow
,”
J. Fluid Mech.
,
556
, pp.
147
166
.
30.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2005
, “
Starting Flow Through Nozzles With Temporally Variable Exit Diameter
,”
J. Fluid Mech.
,
538
, pp.
111
136
.
31.
Rosenfeld
,
M.
,
Rambod
,
E.
, and
Gharib
,
M.
,
1998
, “
Circulation and Formation Number of Laminar Vortex Rings
,”
J. Fluid Mech.
,
376
, pp.
297
318
.
32.
Shusser
,
M.
, and
Gharib
,
M.
,
2000
, “
Energy and Velocity of a Forming Vortex Ring
,”
Phys. Fluids.
,
12
(
3
), p. 618.
33.
Gao
,
L.
, and
Yu
,
S. C. M.
,
2012
, “
Development of the Trailing Shear Layer in a Starting Jet During Pinch-Off
,”
J. Fluid Mech.
,
700
, pp.
382
405
.
34.
O'Farrell
,
C.
, and
Dabiri
,
J. O.
,
2010
, “
A Lagrangian Approach to Identifying Vortex Pinch-Off
,”
Chaos
,
20
(
1
), p.
017513
.
35.
Mohseni
,
K.
,
1998
, “
A Model for Universal Time Scale of Vortex Ring Formation
,”
Phys. Fluids.
,
10
(
10
), pp.
2436
2438
.
36.
O'Farrel
,
C.
, and
Dabiri
,
J. O.
,
2014
, “
Pinch-Off of Non-Axisymmetric Vortex Rings
,”
J. Fluid Mech.
,
740
, pp.
61
96
.
37.
Fabris
,
D.
, and
Liepmann
,
D.
,
1997
, “
Vortex Ring Structure at Late Stages of Formation
,”
Phys. Fluids
,
9
(9), pp.
2801
2803
.
38.
Norbury
,
J.
,
1973
, “
A Family of Steady Vortex Rings
,”
J. Fluid Mech.
,
57
(
3
), pp.
417
431
.
39.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
40.
Krieg
,
M.
, and
Mohseni
,
K.
,
2013
, “
On Approximating the Translational Velocity of Vortex Rings
,”
ASME J. Fluid Eng.
,
135
(
12
), p.
124501
.
41.
Akhmetov
,
D. G.
,
2008
, “
Loss of Energy During the Motion of a Vortex Ring
,”
J. Appl. Mech. Tech. Phys.
,
49
(
1
), pp.
18
22
.
42.
Dabiri
,
J. O.
,
2006
, “
Note on the Induced Lagrangian Drift and Added-Mass of a Vortex
,”
J. Fluid Mech.
,
547
, pp.
105
113
.
43.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2004
, “
Fluid Entrainment by Isolated Vortex Rings
,”
J. Fluid Mech.
,
511
, pp.
311
331
.
44.
Dora
,
C. L.
,
Murugan
,
T.
,
De
,
S.
, and
Das
,
D.
,
2014
, “
Role of Slipstream Instability in Formation of Counter-Rotating Vortex Rings Ahead of a Compressible Vortex Ring
,”
J. Fluid Mech.
,
753
, pp.
29
48
.
You do not currently have access to this content.