Combined damage caused by cavitation and abrasion is a serious problem concerning hydraulic structures and machinery operating in hyper-concentrated sediment-laden rivers. Conceptualization of a model for simulation and assessment of the combined damage, therefore, becomes necessary. Experimental results demonstrate that sediments cast a strong influence on the combined damage caused by cavitation and abrasion. Sediments with size larger compared to a critical size tend to aggravate the combined damage, while sediments with size smaller compared to critical relieve the combined damage effect when compared against cavitation-only damage. Based on these results, a new model has been proposed and built in order to predict the combined damage and assess the range of sediments that relieve or aggravate the damage as sediments pass through the structure and machinery. The model represents an integral with damage as the integrand and sediments representing the domain of integration, and was built in three steps—the first step establishes a relationship between damage and sediments of a single size (SS model); the second step establishes a relationship between damage and sediments from an actual river (MS model); and the third step proposes a standard to assess the damaging effect on hydro machinery (CS model). Model parameters were verified using 74 cases of laboratory experiments. By comparing simulation results against experimental data, it has been inferred that the proposed model can be employed to study practical problems in a predictive manner and promote safe operation of reservoirs by predicting damage characteristics of river water.

References

1.
Falvey
,
H. T.
,
1983
,
Prevention of Cavitation on Chutes and Spillways
(
Frontiers in Hydraulic Engineering)
, American Society of Civil Engineers, Reston, VA, pp.
432
437
.
2.
Arndt
,
R. E. A.
,
2012
, “
Some Remarks on Hydrofoil Cavitation
,”
J. Hydrodyn.
,
24
(
3
), pp.
305
314
.
3.
Escalera
,
X.
,
Egusquizaa
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.
4.
Hammitt
,
F. G.
,
1980
,
Cavitation and Multiphase Flow Phenomena
,
McGraw-Hill
,
New York
.
5.
Knapp
,
R. T.
, and
Daily
,
J. W.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
6.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
7.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2005
,
Engineering Tribology
,
Elsevier
, Oxford, UK.
8.
Scott
,
P.
,
1979
,
Wear
,
Academic Press
,
New York
.
9.
Kornfeld
,
M.
, and
Suvorov
,
L.
,
1944
, “
On the Destructive Action of Cavitation
,”
J. Appl. Phys.
,
15
(
6
), pp.
495
507
.
10.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186
, pp.
1
10
.
11.
Freudigmann
,
H. A.
,
Iben
,
U.
,
Dörr
,
A.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.
12.
Finnie
,
I.
, and
Shaw
,
M. C.
,
1956
, “
The Friction Process in Metal Cutting
,”
Trans. ASME
,
78
, pp.
1649
1657
.
13.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equation: Their Form and Content
,”
Wear
,
181–183
(Pt. 2), pp.
443
457
.
14.
Jian
,
W.
,
Petkovsek
,
M.
,
Liu
,
H.
,
Širok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), pp.
12853
12860
.
15.
Li
,
Z. R.
,
Pourquie
,
M.
, and
Terwisga
,
T. V.
,
2014
, “
Assessment of Cavitation Erosion With a URANS Method
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041101
.
16.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech.
,
24
(
4
), pp.
522
538
.
17.
Gregorc
,
B.
,
Hriberšek
,
M.
, and
Predin
,
A.
,
2011
, “
The Analysis of the Impact of Particles on Cavitation Flow Development
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111304
.
18.
Li
,
S.
,
2005
, “
Cavitation Enhancement of Silt Erosion—An Envisaged Micro Model
,”
Wear
,
260
(
9–10
), pp.
1145
1150
.
19.
Huang
,
S.
,
Ihara
,
A.
,
Watanabe
,
H.
, and
Hashimoto
,
H.
,
1996
, “
Effects of Solid Particle Properties on Cavitation Erosion in Solid-Water Mixtures
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
749
755
.
20.
Zhang
,
Y.
,
Zhang
,
Y.
,
Qian
,
Z. D.
,
Ji
,
B.
, and
Wu
,
Y.
,
2016
, “
A Review of Microscopic Interactions Between Cavitation Bubbles and Particles in Silt-Laden Flow
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
303
318
.
21.
Stao
,
J.
,
Usami
,
K.
, and
Okamura
,
T.
,
1991
, “
Basic Study of Coupled Damage Caused by Silt Abrasion and Cavitation Erosion
,”
JSME Int. J., Ser. II
,
34
(
3
), pp.
292
297
.
22.
Jin
,
H.
,
Zheng
,
F.
,
Li
,
S.
, and
Chang
,
C.
,
1986
, “
The Role of Sand Particles on the Rapid Destruction of the Cavitation Zone of Hydraulic Turbines
,”
Wear
,
112
(
2
), pp.
199
205
.
23.
Li
,
S.
,
2003
, “
Cavitation Enhancement in Silt Erosion: Obstacles and Way Forward
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, Paper No.
Cav03-GS-11-011
.http://flow.me.es.osaka-u.ac.jp/cav2003/Papers/Cav03-GS-11-011.pdf
24.
Madadnia
,
J.
, and
Owen
,
I.
,
1993
, “
Accelerated Surface Erosion by Cavitating Particulate-Laden Flows
,”
Wear
,
165
(
1
), pp.
113
116
.
25.
Borkent
,
B. M.
,
Arora
,
M.
,
Ohl
,
C.-D.
,
De Jong
,
N.
,
Versluis
,
M.
,
Lohse
,
D.
,
Mørch
,
K. A.
,
Klaseboer
,
E.
, and
Khoo
,
B. C.
,
2008
, “
The Acceleration of Solid Particles Subjected to Cavitation Nucleation
,”
J. Fluid Mech.
,
610
, pp.
157
182
.
26.
Wu
,
J. H.
,
Su
,
K. P.
,
Wang
,
Y.
, and
Gou
,
W. J.
,
2017
, “
Effect of Air Bubble Size on Cavitation Erosion Reduction
,”
Sci. China Technol. Sci.
,
60
(
4
), pp.
523
528
.
27.
Lian
,
J.
,
Gou
,
W.
,
Li
,
H.
, and
Zhang
,
H.
,
2018
, “
Effect of Sediment Size on Damage Caused by Cavitation and Abrasion in Sediment-Water Mixture
,”
Wear
,
398–399
, pp.
201
208
.
28.
Dunstan
,
P. J.
, and
Li
,
S. C.
,
2010
, “
Cavitation Enhancement of Silt Erosion: Numerical Studies
,”
Wear
,
268
(
7–8
), pp.
946
954
.
29.
ASTM
,
2003
, “
Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,”
ASTM International
,
West Conshohocken, PA
, Standard No.
ASTM G32-03
.https://www.astm.org/DATABASE.CART/HISTORICAL/G32-03.htm
You do not currently have access to this content.