This paper presents the capability of a numerical code, isis-cfd, based on the solution of the Navier–Stokes equations, for the investigation on the hydrodynamic characteristics of a marine propeller in open water. Two propellers are investigated: the Istituto Nazionale per Studi ed Esperienze di Architectura Navale (INSEAN) E779A model in straight-ahead flow and the Potsdam Propeller Test Case (PPTC) model in oblique flow. The objectives of this study are to establish capabilities of various turbulent closures to predict the wake propeller and to predict the instability processes in the wake if it exists. Two Reynolds-averaged Navier–Stokes (RANS) models are used: the k–ω shear stress transport (SST) of Menter and an anisotropic two-equation explicit algebraic Reynolds stress model (EARSM). A hybrid RANS–large eddy simulation (LES) model is also used. Computational results for global flow quantities are discussed and compared with experimental data. These quantities are in good agreement with the measured data. The hybrid RANS–LES model allows to capture the evolution of the tip vortices. For the INSEAN E779A model, the instability of the wake is only predicted with a hybrid RANS–LES model, and the position of these instabilities is in good agreement with the experimental visualizations.

References

1.
Felli
,
M.
,
Camusi
,
R.
, and
Felice
,
F. D.
,
2011
, “
Mechanisms of Evolution of the Propeller Wake in the Transition and Far Fields
,”
J. Fluid Mech.
,
682
, pp.
5
53
.
2.
Muscari
,
R.
,
Mascio
,
A. D.
, and
Verzicco
,
R.
,
2013
, “
Modeling of Vortex Dynamics in the Wake of a Marine Propeller
,”
Comput. Fluids
,
73
, pp.
63
79
.
3.
El Moctar
,
O. M.
, and
Bertram
,
V.
,
2000
, “
RANS Simulation of Propeller in Oblique Flow
,”
Third Numerical Towing Tank Symposium
(NUTTS), Tjarno, Sweden, Sept. 9–13, pp.
46
48
.
4.
Krasilnikov
,
V.
,
Zhang
,
Z.
, and
Hong
,
F.
,
2009
, “
Analysis of Unsteady Propeller Blade Forces by RANS
,”
First International Symposium on Marine Propulsors
(
SMP
), Trondheim, Norway, June 9, pp.
251
261
.http://www.marinepropulsors.com/proceedings/TA3-3-Krasilnikov%20-%20Analysis%20of%20Unsteady%20Propeller%20Blade%20Forces%20by%20RAN.pdf
5.
Shamsi
,
R.
, and
Ghassemi
,
H.
,
2013
, “
Numerical Investigation of Yaw Angle Effects on Propulsive Characteristics of Podded Propulsors
,”
Int. J. Nav. Archit. Ocean Eng.
,
5
(
2
), pp.
287
301
.http://www.sciencedirect.com/science/article/pii/S2092678216303983
6.
Dubbioso
,
G.
,
Muscari
,
R.
, and
Mascio
,
A. D.
,
2013
, “
Analysis of the Performance of a Marine Propeller Operating in Oblique Flow
,”
Comput. Fluids
,
75
, pp.
86
102
.
7.
Dubbioso
,
G.
,
Muscari
,
R.
, and
Mascio
,
A. D.
,
2014
, “
Analysis of the Performance of a Marine Propeller Operating in Oblique Flow. Part 2: Very High Incidence Angles
,”
Comput. Fluids
,
92
, pp.
56
81
.
8.
Yao
,
J.
,
2015
, “
Investigation on Hydrodynamic Performance of a Marine Propeller in Oblique Flow by RANS Computation
,”
Int. J. Nav. Archit. Ocean Eng.
,
7
(
1
), pp.
56
69
.
9.
Deng
,
G. B.
, and
Visonneau
,
M.
,
1999
, “
Comparison of Explicit Algebraic Stress Models and Second-Order Turbulence Closures for Steady Flow Around Ships
,”
Seventh Symposium on Numerical Ship Hydrodynamics
, Nantes, France, July 19–22, pp.
4.4.1
4.4.15
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.534.5953&rep=rep1&type=pdf
10.
Guilmineau
,
E.
,
Deng
,
G. B.
, and
Wackers
,
J.
,
2011
, “
Numerical Simulation With a DES Approach for Automotive Flows
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
807
816
.
11.
Queutey
,
P.
, and
Visonneau
,
M.
,
2007
, “
An Interface Capturing Method for Free-Surface Hydrodynamic Flows
,”
Comput. Fluids
,
36
(
9
), pp.
1481
1510
.
12.
Leroyer
,
A.
, and
Visonneau
,
M.
,
2005
, “
Numerical Methods for RANSE Simulations of a Self-Propelled Fish-Like Body
,”
J. Fluids Struct.
,
20
(
7
), pp.
975
991
.
13.
Deng
,
G. B.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Salvatore
,
F.
,
2013
, “
Ship Propulsion Prediction With a Coupled RANS-BEM Approach
,”
V International Conference on Computational Methods in Marine Engineering
, Hamburg, Germany, May 29–31, pp.
541
551
.
14.
Wackers
,
J.
,
Deng
,
G. B.
,
Guilmineau
,
E.
,
Leroyer
,
A.
,
Queutey
,
P.
, and
Visonneau
,
M.
,
2014
, “
Combined Refinement Criteria for Anisotropic Grid Refinement in Free-Surface Flow Simulation
,”
Comput. Fluids
,
92
, pp.
209
222
.
15.
Wells
,
J.
,
Salem-Said
,
A.
, and
Ragab
,
S. A.
,
2010
, “
Effects of Turbulence Modeling on RANS Simulations of Tip Vortices
,”
AIAA
Paper No. 2010-1104.
16.
Felli
,
M.
,
Guj
,
G.
, and
Camusi
,
R.
,
2008
, “
Effect of the Number of Blades on Propeller Wake Evolution
,”
Exp. Fluids
,
44
(
3
), pp.
409
418
.
17.
Aktas
,
B.
,
Turkmen
,
S.
, and
Sampson
,
R.
,
2015
, “Underwater Radiated Noise Investigations of Cavitating Propellers Using Medium Size Cavitation Tunnel Tests and Full-Scale Trials,” Fourth International Symposium on Marine Propulsors (
SMP'15
), Austin, TX, May 31–June 4.http://www.marinepropulsors.com/proceedings/2015/2nd-Workshop-smp15.pdf
18.
Guilmineau
,
E.
,
Deng
,
G. B.
,
Leroyer
,
A.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2015
, “
Influence of the Turbulence Closures for the Wake Prediction of a Marine Propeller
,”
Fourth International Symposium on Marine Propulsors
(
SMP
), Austin, TX, May 31–June 4, pp. 177–183.http://www.marinepropulsors.com/proceedings/2015/MA4-1.pdf
You do not currently have access to this content.