Abstract

A particle-resolved direct numerical simulation is performed on the motion of spherical particles with an eccentric internal mass distribution in lateral linear shear flow, which is oriented in the vertical direction and sheared in a horizontal direction. We examine the effect of mass eccentricity on the two-way interactions of particles with both laminar and turbulent shear flows. A spherical shell/hollow particle with an inner spherical core is focused on as a typical example of mass eccentric particles. The Navier–Stokes equations and the Newton–Euler equations are solved for the fluid phase and the particles, respectively. An immersed boundary method is adopted to represent the shell particle. The Newton–Euler equations are solved using the body-fixed coordinate system and four quaternion parameters, considering the deviation of the center of mass from the center of the spherical shell particle. Simulations are performed at a relatively low particle volume fraction of 0.4%. In turbulent flows, the Taylor-microscale Reynolds number reached about 49 at the end of the simulations. Numerical results show that shear-induced particle rotation is suppressed by the torque due to gravity. It is found that the lateral migration of mass eccentric particles becomes less vigorous in both laminar and turbulent flows since the effect of the Magnus lift force is also weakened for mass eccentric particles. It is also found that the evolution of fluid kinetic energy is significantly affected by the mass eccentricity of particles in laminar flows.

References

1.
Zhang
,
J.
,
Yan
,
S.
,
Yuan
,
D.
,
Alici
,
G.
,
Nguyen
,
N.-T.
,
Warkiani
,
M. E.
, and
Li
,
W.
,
2016
, “
Fundamentals and Applications of Inertial Microfluidics: A Review
,”
Lab Chip
,
16
(
1
), pp.
10
34
.10.1039/C5LC01159K
2.
Ern
,
P.
,
Risso
,
F.
,
Fabre
,
D.
, and
Magnaudet
,
J.
,
2012
, “
Wake-Induced Oscillatory Paths of Bodies Freely Rising or Falling in Fluids
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
97
121
.10.1146/annurev-fluid-120710-101250
3.
Mathai
,
V.
,
Zhu
,
X.
,
Sun
,
C.
, and
Lohse
,
D.
,
2018
, “
Flutter to Tumble Transition of Buoyant Spheres Triggered by Rotational Inertia Changes
,”
Nat. Commun.
,
9
(
1
), p.
1792
.10.1038/s41467-018-04177-w
4.
Yasseri
,
S.
,
2014
, “
Experiment of Free-Falling Cylinders in Water
,”
Underwater Technol.
,
32
(
3
), pp.
177
191
.10.3723/ut.32.177
5.
Angle
,
B. R.
,
Rau
,
M. J.
, and
Byron
,
M. L.
,
2019
, “
Effect of Mass Distribution on Falling Cylindrical Particles at Intermediate Reynolds Numbers
,”
ASME
Paper No. AJKFLUIDS-5458
.
6.
Peng
,
C.
,
Ayala
,
O. M.
, and
Wang
,
L.-P.
,
2019
, “
A Direct Numerical Investigation of Two-Way Interactions in a Particle-Laden Turbulent Channel Flow
,”
J. Fluid Mech.
,
875
, pp.
1096
1144
.10.1017/jfm.2019.509
7.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2002
, “
Effect of Free Rotation on the Motion of a Solid Sphere in Linear Shear Flow at Moderate Re
,”
Phys. Fluids
,
14
(
8
), pp.
2719
2736
.10.1063/1.1487378
8.
Tanaka
,
M.
,
2017
, “
Effect of Gravity on the Development of Homogeneous Shear Turbulence Laden With Finite-Size Particles
,”
J. Turbul.
,
19
, pp.
1144
1179
.10.1080/14685248.2017.1363393
9.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
10.
Kurose
,
R.
, and
Komori
,
S.
,
1999
, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
,
384
, pp.
183
206
.10.1017/S0022112099004164
11.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2009
, “
Lattice Boltzmann Simulations to Determine Drag, Lift and Torque Acting on Non-Spherical Particles
,”
Comput. Fluids
,
38
, pp.
572
589
.10.1016/j.compfluid.2008.06.001
12.
Zastawny
,
M.
,
Mallouppas
,
G.
,
Zhao
,
F.
, and
Wachem
,
B.
,
2012
, “
Derivation of Drag and Lift Force and Torque Coefficients for Non-Spherical Particles in Flows
,”
Int. J. Multiphase Flow
,
39
, pp.
227
239
.10.1016/j.ijmultiphaseflow.2011.09.004
13.
Ouchene
,
R.
,
Khalij
,
M.
,
Arcen
,
B.
, and
Tanière
,
A.
,
2016
, “
A New Set of Correlations of Drag, Lift and Torque Coefficients for Non-Spherical Particles and Large Reynolds Numbers
,”
Powder Technol.
,
303
, pp.
33
43
.10.1016/j.powtec.2016.07.067
14.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1990
, “
Particle Response and Turbulence Modification in Isotropic Turbulence
,”
Phys. Fluids A
,
2
(
7
), pp.
1191
1203
.10.1063/1.857620
15.
Elghobashi
,
S.
, and
Truesdell
,
G. C.
,
1993
, “
On the Two-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles—I: Turbulence Modification
,”
Phys. Fluids A
,
5
(
7
), pp.
1790
1801
.10.1063/1.858854
16.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
,
2001
, “
Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding
,”
JSME Int J, Ser. B
,
44
(
4
), pp.
526
535
.10.1299/jsmeb.44.526
17.
Cate
,
A. T.
,
Derksen
,
J. J.
,
Portela
,
L. M.
, and
Van Den Akker
,
H. E. A.
,
2004
, “
Fully Resolved Simulations of Colliding Monodisperse Spheres in Forced Isotropic Turbulence
,”
J. Fluid Mech.
,
519
, pp.
233
271
.10.1017/S0022112004001326
18.
Uhlmann
,
M.
,
2008
, “
Interface-Resolved Direct Numerical Simulation of Vertical Particulate Channel Flow in the Turbulent Regime
,”
Phys. Fluids
,
20
(
5
), p.
053305
.10.1063/1.2912459
19.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2010
, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.10.1017/S0022112009994022
20.
Picano
,
F.
,
Breugem
,
W.-P.
, and
Brandt
,
L.
,
2015
, “
Turbulent Channel Flow of Dense Suspensions of Neutrally Buoyant Spheres
,”
J. Fluid Mech.
,
764
, pp.
463
487
.10.1017/jfm.2014.704
21.
Kidanemariam
,
A.
,
Chan-Braun
,
C.
,
Doychev
,
T.
, and
Uhlmann
,
M.
,
2013
, “
Direct Numerical Simulation of Horizontal Open Channel Flow With Finite-Size Heavy Particles at Low Solid Volume Fraction
,”
New J. Phys.
,
15
(
2
), p.
025031
.10.1088/1367-2630/15/2/025031
22.
Tanaka
,
M.
, and
Teramoto
,
D.
,
2015
, “
Modulation of Homogeneous Shear Turbulence Laden With Finite-Size Particles
,”
J. Turbul.
,
16
(
10
), pp.
979
1010
.10.1080/14685248.2015.1050105
23.
Wang
,
G.
,
Abbas
,
M.
, and
Climent
,
E.
,
2017
, “
Modulation of Large-Scale Structures by Neutrally Buoyant and Inertial Finite-Size Particles in Turbulent Couette Flow
,”
Phys. Rev. Fluids
,
2
(
8
), p.
084302
.10.1103/PhysRevFluids.2.084302
24.
Luo
,
K.
,
Hu
,
C.
,
Wu
,
F.
, and
Fan
,
J.
,
2017
, “
Direct Numerical Simulation of Turbulent Boundary Layer With Fully Resolved Particles at Low Volume Fraction
,”
Phys. Fluids
,
29
(
5
), p.
053301
.10.1063/1.4982233
25.
Lin
,
Z.
,
Shao
,
X.
,
Yu
,
Z.
, and
Wang
,
L.-P.
,
2017
, “
Effects of Finite-Size Heavy Particles on the Turbulent Flows in a Square Duct
,”
J. Hydrodyn.
,
29
(
2
), pp.
272
282
.10.1016/S1001-6058(16)60737-0
26.
Ardekani
,
M. N.
,
Asmar
,
L. A.
,
Picano
,
F.
, and
Brandt
,
L.
,
2018
, “
Numerical Study of Heat Transfer in Laminar and Turbulent Pipe Flow With Finite-Size Spherical Particles
,”
Int. J. Heat Fluid Flow
,
71
, pp.
189
199
.10.1016/j.ijheatfluidflow.2018.04.002
27.
Mashayek
,
F.
,
1998
, “
Droplet-Turbulence Interactions in low-Mach-Number Homogeneous Shear Two-Phase Flows
,”
J. Fluid Mech.
,
367
, pp.
163
203
.10.1017/S0022112098001414
28.
Ahmed
,
A. M.
, and
Elghobashi
,
S.
,
2000
, “
On the Mechanisms of Modifying the Structure of Turbulent Homogeneous Shear Flows by Disperse Particles
,”
Phys. Fluids
,
12
(
11
), pp.
2906
2930
.10.1063/1.1308509
29.
Tanaka
,
M.
,
Maeda
,
Y.
, and
Hagiwara
,
Y.
,
2002
, “
Turbulence Modification in a Homogeneous Turbulent Shear Flow Laden With Small Heavy Particles
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
615
626
.10.1016/S0142-727X(02)00157-1
30.
Gualtieri
,
P.
,
Picano
,
F.
,
Sardina
,
G.
, and
Casciola
,
C. M.
,
2013
, “
Clustering and Turbulence Modulation in Particle-Laden Shear Flows
,”
J. Fluid Mech.
,
715
, pp.
134
162
.10.1017/jfm.2012.503
31.
Gualtieri
,
P.
,
Battista
,
F.
, and
Casciola
,
C. M.
,
2017
, “
Turbulence Modulation in Heavy-Loaded Suspensions of Tiny Particles
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034304
.10.1103/PhysRevFluids.2.034304
32.
Battista
,
F.
,
Gualtieri
,
P.
,
Mollicone
,
J.-P.
, and
Casciola
,
C. M.
,
2018
, “
Application of the Exact Regularized Point Particle Method (ERPP) to Particle Laden Turbulent Shear Flows in the Two-Way Coupling Regime
,”
Int. J. Multiphase Flow
,
101
, pp.
113
124
.10.1016/j.ijmultiphaseflow.2018.01.006
33.
Kasbaoui
,
M. H.
,
Koch
,
D. L.
, and
Desjardins
,
O.
,
2019
, “
Clustering in Euler-Euler and Euler-Lagrange Simulations of Unbounded Homogeneous Particle-Laden Shear
,”
J. Fluid Mech.
,
859
, pp.
174
203
.10.1017/jfm.2018.796
34.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.10.1016/j.jcp.2005.03.017
35.
Meriam
,
J. L.
,
Kraige
,
L. G.
, and
Bolton
,
J. N.
,
2015
,
Engineering Mechanics: Dynamics
, 8th ed.,
Wiley
,
Hoboken, NJ
.
36.
Kempe
,
T.
, and
Fröhlich
,
J.
,
2012
, “
An Improved Immersed Boundary Method With Direct Forcing for the Simulation of Particle Laden Flows
,”
J. Comput. Phys.
,
231
(
9
), pp.
3663
3684
.10.1016/j.jcp.2012.01.021
37.
Breugem
,
W.-P.
,
2012
, “
A Second-Order Accurate Immersed Boundary Method for Fully Resolved Simulations of Particle-Laden Flows
,”
J. Comput. Phys.
,
231
(
13
), pp.
4469
4498
.10.1016/j.jcp.2012.02.026
38.
Tanaka
,
M.
,
2019
, “
Motion of Spherical Bubbles in Homogeneous Shear Turbulence
,”
Fluid Dyn. Res.
,
51
(
3
), p.
035505
.10.1088/1873-7005/ab1572
39.
Gerz
,
T.
,
Schumann
,
U.
, and
Elghobashi
,
S. E.
,
1989
, “
Direct Numerical Simulation of Stratified Homogeneous Turbulent Shear Flows
,”
J. Fluid Mech.
,
200
, pp.
563
594
.10.1017/S0022112089000765
40.
Roma
,
A. M.
,
Peskin
,
C. S.
, and
Berger
,
M. J.
,
1999
, “
An Adaptive Version of the Immersed Boundary Method
,”
J. Comput. Phys.
,
153
(
2
), pp.
509
534
.10.1006/jcph.1999.6293
41.
Qi
,
D.
,
1999
, “
Lattice-Boltzmann Simulations of Particles in Non-zero-Reynolds-Number Flows
,”
J. Fluid Mech.
,
385
, pp.
41
62
.10.1017/S0022112099004401
42.
Kempe
,
T.
, and
Fröhlich
,
J.
,
2012
, “
Collision Modeling for the Interface-Resolved Simulation of Spherical Particles in Viscous Fluids
,”
J. Fluid Mech.
,
709
, pp.
445
489
.10.1017/jfm.2012.343
43.
Climent
,
E.
, and
Maxey
,
M. R.
,
2003
, “
Numerical Simulations of Random Suspensions at Finite Reynolds Numbers
,”
Int. J. Multiphase Flow
,
29
(
4
), pp.
579
601
.10.1016/S0301-9322(03)00016-8
44.
Kida
,
S.
, and
Tanaka
,
M.
,
1994
, “
Dynamics of Vortical Structures in a Homogeneous Shear Flow
,”
J. Fluid Mech.
,
274
, pp.
43
68
.10.1017/S002211209400203X
45.
Yin
,
X.
, and
Koch
,
D. L.
,
2007
, “
Hindered Settling Velocity and Microstructure in Suspensions of Solid Spheres With Moderate Reynolds Numbers
,”
Phys. Fluids
,
19
(
9
), p.
093302
.10.1063/1.2764109
46.
Fornari
,
W.
,
Picano
,
F.
,
Sardina
,
G.
, and
Brandt
,
L.
,
2016
, “
Reduced Particle Settling Speed in Turbulence
,”
J. Fluid Mech.
,
808
, pp.
153
167
.10.1017/jfm.2016.648
47.
Tanaka
,
M.
,
2013
, “
Inverse Transverse Migration of Small Bubbles in Turbulence
,”
J. Phys. Soc. Jpn.
,
82
(
4
), p.
044401
.10.7566/JPSJ.82.044401
You do not currently have access to this content.