Abstract

We propose a method to visualize vortex cores based on manipulation of the pressure field produced by isolated vortices in incompressible flow. Under ideal conditions, the function D=2|p|/2p yields an approximate distance to vortex centerlines. As opposed to local methods to identify coherent structures, isosurfaces of D produce a field of vortex tubes equidistant to the vortex core center which, ideally, are independent of vortex intensity or size. In contrast to other line-vortex identification methods, which typically rely on algorithms to detect vortex core lines and frequently need complex implementations, the proposed method can be computed from the local Eulerian velocity and pressure fields as easily as vortex identification methods such as the Q and λ2 criteria. D=2|p|/2p results in the exact distance to the core center for a Rankine vortex and is in general valid for the region of a vortex where there is pure rotation, yielding an approximation to the distance farther from the core in other simple one-dimensional vortex models. The methodology performs well in all tests we attempted, though limitations are presented and discussed. The method is demonstrated for a canonical Burgers vortex, a Bodewadt vortex, homogeneous isotropic turbulent flow, the wake of a propeller, a heaving plate, and a turning containership. The proposed method helps to better visualize vortical flow fields by displaying vortex cores, complementing methods like Q and λ2 which display vortical volumes.

References

1.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
2.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.10.1017/S0022112004002526
3.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
4.
Epps
,
B. P.
,
2017
, “
Review of Vortex Identification Methods
,”
AIAA
Paper No. 2017-0989.10.1115/2017-0989
5.
Volkov
,
K. N.
,
Emel'yanov
,
V. N.
,
Teterina
,
I. V.
, and
Yakovchuk
,
M. S.
,
2017
, “
Visualization of Vortical Flows in Computational Fluid Dynamics
,”
Comput. Math. Math. Phys.
,
57
(
8
), pp.
1360
1375
.10.1134/S0965542517080139
6.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford, CA, Report No.
CTR-S88
.https://ntrs.nasa.gov/search.jsp?R=19890015184
7.
Green
,
M. A.
,
Rowley
,
C. W.
, and
Haller
,
G.
,
2007
, “
Detection of Lagrangian Coherent Structures in Three-Dimensional Turbulence
,”
J. Fluid Mech.
,
572
, pp.
111
120
.10.1017/S0022112006003648
8.
Haller
,
G.
,
2015
, “
Lagrangian Coherent Structures
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
137
162
.10.1146/annurev-fluid-010313-141322
9.
Dubief
,
Y.
, and
Delcayre
,
F.
,
2000
, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
,
1
, pp.
1
22
10.1088/1468-5248/1/1/011.
10.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
11.
Sujudi
,
D.
, and
Haimes
,
R.
,
1995
, “
Identification of Swirling Flow in 3-D Vector Fields
,”
AIAA
Paper No. 95-1715.10.1115/95-1715
12.
Garth
,
C.
,
Wiebel
,
A.
,
Tricoche
,
X.
,
Joy
,
K.
, and
Scheuermann
,
G.
,
2008
, “
On the Role of Domain-Specific Knowledge in the Visualization of Technical Flows
,”
Comp. Graph. Forum
,
27
(
3
), pp.
1007
1014
.10.1111/j.1467-8659.2008.01236.x
13.
Roth
,
M.
,
2000
, “
Automatic Extraction of Vortex Core Lines and Other Line-Type Features for Scientific Visualization
,” Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.
14.
Levy
,
Y.
,
Degani
,
D.
, and
Seginer
,
A.
,
1990
, “
Graphical Visualization of vortical flows by Means of Helicity
,”
AIAA J.
,
28
(
8
), pp.
1347
1352
.10.2514/3.25224
15.
Banks
,
D. C.
, and
Singer
,
B. A.
,
1994
, “
Vortex Tubes in Turbulent Flows: Identification, Representation, Reconstruction
,”
Conference on Visualization
, Washington, DC, Oct. 21, pp.
132
139
.10.1109/VISUAL.1994.346327
16.
Kida
,
S.
, and
Miura
,
H.
,
1998
, “
Identification and Analysis of Vortical Structures
,”
Eur. J. Mech. B/Fluid
,
17
(
4
), pp.
471
488
.10.1016/S0997-7546(98)80005-8
17.
Strawn
,
R. C.
,
Kenwright
,
D. N.
, and
Ahmad
,
J.
,
1999
, “
Computer Visualization of Vortex Wake Systems
,”
AIAA J.
,
37
(
4
), pp.
511
512
.10.2514/2.744
18.
Gerz
,
T.
,
Holzapfel
,
F.
, and
Darracq
,
D.
,
2002
, “
Commercial Aircraft Wake Vortices
,”
Progr. Aerosp. Sci.
,
38
(
3
), pp.
181
208
.10.1016/S0376-0421(02)00004-0
19.
Leweke
,
T.
,
Le Dizes
,
S.
, and
Williamson
,
C. H. K.
,
2016
, “
Dynamics and Instabilities of Vortex Pairs
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
507
541
.10.1146/annurev-fluid-122414-034558
20.
Bürger
,
K.
,
Treib
,
M.
,
Westermann
,
R.
,
Werner
,
S.
,
Lalescu
,
C.
,
Szalay
,
A.
,
Meneveau
,
C.
, and
Eyink
,
G.
,
2012
, “
Vortices Within Vortices: Hierarchical Nature of Vortex Tubes in Turbulence
,”
arXiv:1210.3325v2
. https://arxiv.org/abs/1210.3325
21.
Boedewadt
,
U. T.
,
1940
, “
Die Drehstromung Uber Festem Grund
,”
Z. Angew. Math. Mech.
,
20
(5), pp.
241
253
.10.1002/zamm.19400200502
22.
Schwiderski
,
E. W.
, and
Lugt
,
H. J.
,
1964
, “
Rotating Flows of Von Kármán and Bödewadt
,”
Phys. Fluids
,
7
(
6
), pp.
867
875
.10.1063/1.1711298
23.
Li
,
Y.
,
Perlman
,
E.
,
Wan
,
M. P.
,
Yang
,
Y. K.
,
Meneveau
,
C.
,
Burns
,
R.
,
Chen
,
S. Y.
,
Szalay
,
A.
, and
Eyink
,
G.
,
2008
, “
A Public Turbulence Database Cluster and Applications to Study Lagrangian Evolution of Velocity Increments in Turbulence
,”
J. Turbul.
,
9
(
31
), pp.
1
29
.10.1080/14685240802376389
24.
Chase
,
N.
, and
Carrica
,
P.
,
2013
, “
Submarine Propeller Computations and Application to Self-Propulsion of DARPA Suboff
,”
Ocean Eng.
,
60
, pp.
68
80
.10.1016/j.oceaneng.2012.12.029
25.
Di Mascio
,
A.
,
Muscari
,
R.
, and
Dubbioso
,
G.
,
2014
, “
On the Wake Dynamics of a Propeller Operating in Drift
,”
J. Fluid Mech.
,
754
, pp.
263
307
.10.1017/jfm.2014.390
26.
Leweke
,
T.
,
Quaranta
,
H. U.
,
Bolnot
,
H.
,
Blanco-Rodriguez
,
F. J.
, and
Le Dizes
,
S.
,
2014
, “
Long- and Short-Wave Instabilities in Helical Vortices
,”
J. Phys.: Conf. Ser.
,
524
, p.
012154
.10.1088/1742-6596/524/1/012154
27.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
, and
Hover
,
F. S.
,
2004
, “
Review of Experimental Work in Biomimetic Foils
,”
IEEE J. Oceanic Eng.
,
29
(
3
), pp.
585
594
.10.1109/JOE.2004.833216
28.
Carrica
,
P.
,
Mofidi
,
A.
,
Eloot
,
K.
, and
Delefortrie
,
G.
,
2016
, “
Direct Simulation and Experimental Study of Zigzag Maneuver of KCS in Shallow Water
,”
Ocean Eng.
,
112
, pp.
117
133
.10.1016/j.oceaneng.2015.12.008
You do not currently have access to this content.