Abstract
The classical theory of small amplitude shallow water waves is applied to regular polygonal basins. The natural frequencies of the basins are related to the eigenvalues of the Helmholtz equation. Exact solutions are presented for triangular, square, and circular basins while pentagonal, hexagonal, and octagonal basins are solved, for the first time, by an efficient Ritz method. The first five eigenvalues of each basin are tabulated and the corresponding mode shapes are discussed. Tileability conditions are presented. Some modes (eigenmodes) can be tiled into larger domains.
Issue Section:
Technical Briefs
References
1.
Lamb
,
H.
, 1945
, Hydrodynamics
,
Dover
,
New York
.2.
Wehausen
,
J. V.
, and
Laitone
,
E. V.
, 1960
, “
Surface Waves
,” Handbuch Der Physik
,
C.
,
Truesdell
, ed.,
Springer
,
Berlin
, pp. 446
–778
.3.
Ibrahim
,
R. A.
, 2005
, Liquid Sloshing Dynamics
,
Cambridge University Press
,
New York
.4.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
, 2009
, Sloshing
,
Cambridge University Press
, Cambridge, UK
.5.
Rayleigh
,
J. W. S.
, 1876
, “
On Waves
,” Phil. Mag.
,
1
(5
), p. 257
.6.
Jeffreys
,
H.
, 1925
, “
The Free Oscillations of Water in an Elliptic Lake
,” Proc. London Math. Soc.
,
S2-23
(1
), pp. 455
–476
.10.1112/plms/s2-23.1.4557.
Proudman
,
J.
, 1928
, “
On the Tides in a Flat Semicircular Sea of Uniform Depth
,” Mon. Not. R. Astron. Soc.
,
2
, pp. 32
–44
.10.1111/j.1365-246X.1928.tb05394.x8.
Safwat
,
H.
, 1986
, “
Gravity Waves in Basins Whose Plan is a Regular N-Gon
,” Z. Angew. Math. Mech.
,
66
(2
), pp. 121
–124
.10.1002/zamm.198606602209.
Weinstock
,
R.
, 1952
, Calculus of Variations
,
McGraw-Hill
,
New York
.10.
Schelkunoff
,
S. A.
, 1943
, Electromagnetic Waves
,
Van Nostrand
,
New York
.11.
Wang
,
C. Y.
, 2010
, “
Exact Solution of Equilateral Triangular Waveguide
,” Elect. Lett.
,
46
(13
), pp. 925
–930
.10.1049/el.2010.026712.
Wang
,
C. Y.
, 2017
, “
Ritz Solution of the Helmholtz Equation in a Stadium-Shaped Domain With Zero Normal Derivatives-Applications to Fluid Sloshing and Thermo-Convective Stability
,” Arch. Mech.
,
69
, pp. 1
–13
.https://am.ippt.pan.pl/am/article/view/v69p47113.
Tadjbakhsh
,
I.
, and
Keller
,
J. B.
, 1960
, “
Standing Surface Waves of Finite Amplitude
,” J. Fluid Mech.
,
8
(3
), pp. 442
–451
.10.1017/S002211206000072414.
Faltinsen
,
O. M.
,
Rognebakke
,
O. F.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
, 2000
, “
Multidimensional Modal Analysis of Nonlinear Sloshing in a Rectangular Tank With Finite Water Depth
,” J. Fluid Mech.
,
407
, pp. 201
–234
.10.1017/S002211209900756915.
Shankar
,
P. N.
, and
Kidambi
,
R.
, 2002
, “
A Modal Method for Finite Amplitude, Nonlinear Sloshing
,” Pramana J. Phys.
,
59
(4
), pp. 631
–651
.10.1007/s12043-002-0074-8Copyright © 2020 by ASME
You do not currently have access to this content.