Abstract

The emergence of a submerged vortex upstream of a pump can reduce pump intake efficiency and cause structural damage. In this study, we consider the use of active flow control with steady blowing to increase the pressure distribution within a single-phase pump-induced wall-normal vortex model, which is based on the Burgers vortex with a no-slip boundary condition prescribed along its symmetry plane. The goal of our control is to modify the vortex core velocity profile. These changes are sought to increase the core pressure such that detrimental effects on the pump are alleviated. Three-dimensional direct numerical simulations are performed to examine the dynamics of the vortex with the application of axial momentum injection at and around the root of the vortex. We find that the active flow control approach can effectively modify the wall-normal vortical structure and significantly increase the low-core pressure by up to 81% compared to that of the uncontrolled case. The result shows that the control setup is also effective when it is introduced in an off-centered manner. Compared to the unsteady blowing and suction-based actuation from our previous work (Liu, Q., An, B., Nohmi, M., Obuchi, M., and Taira, K., 2018, “Core-Pressure Alleviation for a Wall-Normal Vortex by Active Flow Control,” J. Fluid Mech., 853, p. R1.), the current steady control technique offers an effective and simple flow control setup that can support robust operations of pumps.

References

1.
Posey
,
C. J.
, and
Hsu
,
H. C.
,
1950
, “
How the Vortex Effects Orifice Discharge
,”
Eng. News Rec.
,
144
(
10
), p.
30
.
2.
Zhao
,
L.
,
2010
, “
Visualization of Vortices in Pump Sump
,”
J. Visualization Soc. Jpn.
,
30
(
116
), pp.
28
33
.10.3154/jvs.30.28
3.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
, Cambridge, UK.
4.
Yamade
,
Y.
,
Kato
,
C.
,
Nagahara
,
T.
, and
Matsui
,
J.
,
2016
, “
Numerical Investigations of Submerged Vortices in a Model Pump Sump by Using Large Eddy Simulation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
032003
.10.1088/1755-1315/49/3/032003
5.
Nagahara
,
T.
,
Sato
,
T.
, and
Okamura
,
T.
,
2001
, “
Effect of the Submerged Vortex Cavitation Occurred in Pump Suction Intake on Hydraulic Forces of Mixed Flow Pump Impeller
,”
Proceedings of Fourth International Symposium on Cavitation
, California Institute of Technology, Pasadena, CA, p.
B8.006
.
6.
An
,
B.
,
Liu
,
Q.
,
Taira
,
K.
,
Nohmi
,
M.
, and
Obuchi
,
M.
,
2018
, “
A Research Outlook on Turbulent Vortex Control in Pump Sump
,”
Ebara Tech. Rev.
,
255
, pp.
31
37
. https://www.ebara.co.jp/en/about/technologies/abstract/detail/__icsFiles/afieldfile/2019/06/10/18-07_E.pdf
7.
Yang
,
H. Q.
,
2017
, “
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
,”
AIAA
Paper No. 2017-1707.10.2514/6.2017-1707
8.
Kim
,
C. G.
,
Choi
,
Y. D.
,
Choi
,
J. W.
, and
Lee
,
Y. H.
,
2012
, “
A Study on the Effectiveness of an Anti Vortex Device in the Sump Model by Experiment and CFD
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
, p.
072004
.10.1088/1755-1315/15/7/072004
9.
An
,
B.
,
Liu
,
Q.
,
Nohmi
,
M.
,
Obuchi
,
M.
, and
Taira
,
K.
,
2019
, “
Dynamic Mode Analysis and Control of Vortical Flows in Pump Sumps
,” Division of Fluid Dynamics, Bulletin of the American Physical Society, Seattle, WA, Nov. 26, Paper No. Q27.00006.
10.
Zhang
,
R.-K.
,
Mao
,
F.
,
Wu
,
J.-Z.
,
Chen
,
S.-Y.
,
Wu
,
Y.-L.
, and
Liu
,
S.-H.
,
2009
, “
Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021101
.10.1115/1.3002318
11.
Pasche
,
S.
,
Avellan
,
F.
, and
Gallaire
,
F.
,
2017
, “
Part Load Vortex Rope as a Global Unstable Mode
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051102
.10.1115/1.4035640
12.
Pasche
,
S.
,
Avellan
,
F.
, and
Gallaire
,
F.
,
2019
, “
Optimal Control of Part Load Vortex Rope in Francis Turbines
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081203
.10.1115/1.4042560
13.
Brown
,
G.
, and
Lopez
,
J.
,
1990
, “
Axisymmetric Vortex Breakdown—Part 2: Physical Mechanisms
,”
J. Fluid Mech.
,
221
, pp.
553
576
.10.1017/S0022112090003676
14.
Shtern
,
V.
,
Borissov
,
A.
, and
Hussain
,
F.
,
1997
, “
Vortex Sinks With Axial Flow: Solution and Applications
,”
Phys. Fluids
,
9
(
10
), pp.
2941
2959
.10.1063/1.869406
15.
Bosioc
,
A. I.
,
Susan-Resiga
,
R.
,
Muntean
,
S.
, and
Tanasa
,
C.
,
2012
, “
Unsteady Pressure Analysis of a Swirling Flow With Vortex Rope and Axial Water Injection in a Discharge Cone
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081104
.10.1115/1.4007074
16.
Štefan
,
D.
,
Rudolf
,
P.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2017
, “
Proper Orthogonal Decomposition of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081101
.10.1115/1.4036244
17.
Mullin
,
T.
,
Kobine
,
J.
,
Tavener
,
S.
, and
Cliffe
,
K.
,
2000
, “
On the Creation of Stagnation Points Near Straight and Sloped Walls
,”
Phys. Fluids
,
12
(
2
), pp.
425
431
.10.1063/1.870320
18.
Husain
,
H. S.
,
Shtern
,
V.
, and
Hussain
,
F.
,
2003
, “
Control of Vortex Breakdown by Addition of Near-Axis Swirl
,”
Phys. Fluids
,
15
(
2
), pp.
271
279
.10.1063/1.1530161
19.
Liu
,
Q.
,
An
,
B.
,
Nohmi
,
M.
,
Obuchi
,
M.
, and
Taira
,
K.
,
2018
, “
Core-Pressure Alleviation for a Wall-Normal Vortex by Active Flow Control
,”
J. Fluid Mech.
,
853
, p.
R1
.10.1017/jfm.2018.629
20.
Burgers
,
J. M.
,
1948
, “
A Mathematical Model Illustrating the Theory of Turbulence
,”
Adv. Appl. Mech.
,
1
, pp.
171
199
.10.1016/S0065-2156(08)70100-5
21.
Ham
,
F.
, and
Iaccarino
,
G.
,
2004
, “
Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes
,”
Annu. Res. Briefs
,
2004
, pp.
3
14
. https://web.stanford.edu/group/ctr/ResBriefs04/ham_iaccarino.pdf
22.
Ham
,
F.
,
Mattsson
,
K.
, and
Iaccarino
,
G.
,
2006
, “
Accurate and Stable Finite Volume Operators for Unstructured Flow Solvers
,”
Annu. Res. Briefs
, pp.
243
261
.https://web.stanford.edu/group/ctr/ResBriefs06/19_ham1.pdf
23.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford University, Palo Alto, CA, Report No. CTR-S88, pp.
193
208
.
24.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
25.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
26.
Kutz
,
J. N.
,
2013
,
Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data
,
Oxford University Press
, Oxford, UK.
27.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
28.
Lachmann
,
G. V.
,
1961
,
Boundary Layer and Flow Control: Its Principles and Application
,
Elsevier
, Bristol, UK.
29.
Gad-el-Hak
,
M.
,
2000
,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
, Cambridge, UK.
30.
Taira
,
K.
, and
Colonius
,
T.
,
2009
, “
Effect of Tip Vortices in Low-Reynolds-Number Poststall Flow Control
,”
AIAA J.
,
47
(
3
), pp.
749
756
.10.2514/1.40615
31.
Munday
,
P. M.
, and
Taira
,
K.
,
2018
, “
Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control
,”
AIAA J.
,
56
(
5
), pp.
1830
1842
.10.2514/1.J056303
You do not currently have access to this content.