Abstract

Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes (URANS) flow simulations are conducted to investigate the highly unsteady flow field at part load operation of a centrifugal pump. By the availability of unsteady flow field measurement data in the impeller wake region, a thorough validation of the simulation method is performed. Grid independence of the results is ensured. Unsteady characteristics in terms of head and shaft power as well as transient blade loads are evaluated to assess the unsteady pump performance. Significant mis-loading of the blading is revealed when one blade passes the volute tongue and associated with the strong unsteady and 3D flow field in the impeller-volute tongue region. Negative radial velocity in the tongue region is the origin of a vortex at the blade pressure side and a subsequent pressure drop that leads to even temporally negative blade loading. The results provide a detailed insight in the complex part load flow field that might be utilized for an improved pump design. As a valuable secondary outcome, a comparison of results obtained by two widely used computational fluid dynamics (CFD) codes for pump flow simulation is provided, i.e., the commercial code ansyscfx and the branch foam-extend of the open source software openfoam. It is found that the results of both methods in terms of unsteady characteristics as well as local ensemble-averaged velocity field are consistent.

References

1.
Japikse
,
D.
,
Marscher
,
W. D.
, and
Furst
,
R. B.
,
1997
,
Centrifugal Pump Design and Performance
,
Concepts ETI
, Wilder, VT.
2.
Berten
,
S.
,
Hentschel
,
S.
,
Kieselbach
,
K.
, and
Dupont
,
P.
,
2011
, “
Experimental and Numerical Analysis of Pressure Pulsations and Mechanical Deformations in a Centrifugal Pump Impeller
,”
ASME
Paper No. AJK2011-06057.10.1115/AJK2011-06057
3.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
30
35
.10.1115/1.2816814
4.
Zhang
,
M.
, and
Tsukamoto
,
H.
,
2005
, “
Unsteady Hydrodynamic Forces Due to Rotor-Stator Interaction on a Diffuser Pump With Identical Number of Vanes on the Impeller and Diffuser
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
743
751
.10.1115/1.1949640
5.
Arndt
,
N.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1989
, “
Rotor–Stator Interaction in a Diffuser Pump
,”
ASME J. Turbomach.
,
111
(
3
), pp.
213
221
.10.1115/1.3262258
6.
Khalifa
,
A. E.
,
Al-Qutub
,
A. M.
, and
Ben-Mansour
,
R.
,
2011
, “
Study of Pressure Fluctuations and Induced Vibration at Blade-Passing Frequencies of a Double Volute Pump
,”
Arabian J. Sci. Eng.
,
36
(
7
), pp.
1333
1345
.10.1007/s13369-011-0119-8
7.
Hergt
,
P.
,
Meschkat
,
S.
, and
Stoffel
,
B.
,
2004
, “
The Flow and Head Distribution Within the Volute of a Centrifugal Pump in Comparison With the Characteristics of the Impeller Without Casing
,”
Modelling Fluid Flow
,
Springer
,
Berlin
, pp.
407
418
.
8.
Bert
,
P. F.
,
Combes
,
J. F.
, and
Kueny
,
J. L.
,
1996
, “
Unsteady Flow Calculation in a Centrifugal Pump Using a Finite Element Method
,”
Hydraulic Machinery and Cavitation
,
Springer
, Dordrecht,
The Netherlands
, pp.
371
380
.
9.
He
,
L.
, and
Sato
,
K.
,
2001
, “
Numerical Solution of Incompressible Unsteady Flows in Turbomachinery
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
680
685
.10.1115/1.1383595
10.
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2005
, “
Numerical Investigation of the Transient Flow in a Centrifugal Pump Stage
,”
ASME
Paper No. FEDSM2005-77419.10.1115/FEDSM2005-77419
11.
Zheng
,
L.-L.
,
Dou
,
H.-S.
,
Jiang
,
W.
,
Chen
,
X.
,
Zhu
,
Z.
, and
Cui
,
B.
,
2016
, “
Influence of Rotor-Stator Interaction on Flow Stability in Centrifugal Pump Based on Energy Gradient Method
,”
Int. J. Turbo Jet-Engines
,
33
(
4
), pp.
413
419
.10.1515/tjj-2015-0046
12.
Chalghoum
,
I.
,
Elaoud
,
S.
,
Kanfoudi
,
H.
, and
Akrout
,
M.
,
2018
, “
The Effects of the Rotor-Stator Interaction on Unsteady Pressure Pulsation and Radial Force in a Centrifugal Pump
,”
J. Hydrodyn.
,
30
(
4
), pp.
672
681
.10.1007/s42241-018-0073-y
13.
Juckelandt
,
K.
, and
Wurm
,
F.-H.
,
2015
, “
Applicability of Wall-Function Approach in Simulations of Turbomachines
,”
ASME
Paper No. GT2015-42014.10.1115/GT2015-42014
14.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
15.
González
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
937
946
.10.1115/1.2234782
16.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2008
, “
Time–Frequency Characterization of the Unsteady Phenomena in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1527
1540
.10.1016/j.ijheatfluidflow.2008.06.008
17.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2008
, “
Time-Frequency Characterization of Rotating Instabilities in a Centrifugal Pump With a Vaned Diffuser
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
10
.10.1155/2008/202179
18.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p. 111102.10.1115/1.2969273
19.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.10.1016/j.compfluid.2010.01.001
20.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2009
, “
A CFD Parametric Study of Geometrical Variations on the Pressure Pulsations and Performance Characteristics of a Centrifugal Pump
,”
Comput. Fluids
,
38
(
6
), pp.
1243
1257
.10.1016/j.compfluid.2008.11.013
21.
Si
,
Q.
,
Yuan
,
J.
,
Yuan
,
S.
,
Wang
,
W.
,
Zhu
,
L.
, and
Bois
,
G.
,
2014
, “
Numerical Investigation of Pressure Fluctuation in Centrifugal Pump Volute Based on SAS Model and Experimental Validation
,”
Adv. Mech. Eng.
,
6
, p.
972081
.10.1155/2014/972081
22.
Posa
,
A.
,
Lippolis
,
A.
,
Verzicco
,
R.
, and
Balaras
,
E.
,
2011
, “
Large-Eddy Simulations in Mixed-Flow Pumps Using an Immersed-Boundary Method
,”
Comput. Fluids
,
47
(
1
), pp.
33
43
.10.1016/j.compfluid.2011.02.004
23.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101302
.10.1115/1.4030489
24.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.10.1115/1.4033843
25.
Posa
,
A.
, and
Lippolis
,
A.
,
2018
, “
A LES Investigation of Off-Design Performance of a Centrifugal Pump With Variable-Geometry Diffuser
,”
Int. J. Heat Fluid Flow
,
70
, pp.
299
314
.10.1016/j.ijheatfluidflow.2018.02.011
26.
Posa
,
A.
, and
Lippolis
,
A.
,
2019
, “
Effect of Working Conditions and Diffuser Setting Angle on Pressure Fluctuations Within a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
, pp.
44
60
.10.1016/j.ijheatfluidflow.2018.11.011
27.
Meschkat
,
S.
,
2004
, “
Experimentelle Untersuchung der Auswirkungen instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe
,” Ph.D. thesis,
Technische Universität Darmstadt
, Darmstadt, Germany.
28.
Casimir
,
N.
,
Xiangyuan
,
Z.
,
Ludwig
,
G.
, and
Skoda
,
R.
,
2019
, “
Assessment of Statistical Eddy-Viscosity Turbulence Models for Unsteady Flow at Part and Overload Operation of Centrifugal Pumps
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
(
ETC'13
), Lausanne, Switzerland, Apr. 8–12, p.
13
.https://www.euroturbo.eu/paper/ETC2019-047.pdf
29.
Meschkat
,
S.
, and
Stoffel
,
B.
,
2002
, “
The Local Impeller Head at Different Circumferential Positions in a Volute Casing Centrifugal Pump in Comparison to the Characteristic Curve of the Impeller Alone
,”
21st IAHR Symposium
, Lausanne, Switzerland, Sept. 9–12.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
31.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics,
Reno, NV, Jan. 9–12, Paper No.
366
.10.2514/6.1989-366
32.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
33.
Patankar
,
S.
, and
Spalding
,
D.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
34.
Warming
,
R.
, and
Beam
,
M.
,
1976
, “
Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
,
14
(
9
), pp.
1241
1249
.10.2514/3.61457
35.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
36.
Grotjans
,
H.
, and
Menter
,
F. R.
,
1998
, “
Wall Functions for General Application CFD Codes
,”
Proceedings of the Fourth European Computational Fluid Dynamics Conference
, Athens, Greece, Sept. 7–11, pp.
1112
1117
.
37.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
16th Brazilian Congress of Mechanical Engineering
, Uberlandia, Minas Gerias, Brasil, Nov. 21–30, pp.
117
127
.
38.
Vieser
,
W.
,
Esch
,
T.
, and
Menter
,
F. R.
,
2002
, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,”ANSYS Inc., Canonburg, PA, Report No. CFX-VAL10/0602.
39.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.10.1016/j.jcp.2004.10.018
40.
Sikovsky
,
D. P.
,
2011
, “
Generalized Wall Functions for Turbulent Flows With Strong Adverse Pressure Gradient
,”
J. Eng. Thermophys.
,
20
(
1
), pp.
89
100
.10.1134/S1810232811010085
42.
Stepanoff
,
A. J.
,
1993
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Krieger Publishing Company
, Malabar, FL.
43.
Obi
,
S.
,
Ohimuzi
,
H.
,
Aoki
,
K.
, and
Masuda
,
S.
,
1993
, “
Experimental and Computational Study of Turbulent Separating Flow in an Asymmetric Plane Diffuser
,”
Ninth Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, Paper No. 305.
44.
Buice
,
C. U.
, and
Eaton
,
J. K.
,
2000
, “
Experimental Investigation of Flow Through an Asymmetric Plane Diffuser
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
433
435
.10.1115/1.483278
45.
Dean
,
R. C.
, and
Senoo
,
Y.
,
1960
, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
,
82
(
3
), pp.
563
570
.10.1115/1.3662659
You do not currently have access to this content.