Abstract

We consider the problem of nonlinear rotating non-Newtonian jets in the presence of ambient flows. Using the original governing system of equations for such jet flows, we use scaling and perturbation techniques to reduce such system to a simplified one where the stress tensor is governed by Giesekus constitutive equations. We develop a method to take into account the effect of the ambient flow, which usually exists due to the externally imposed rotational constraint, on the formation of the non-Newtonian jet. We compute numerically the nonlinear steady solutions for the jet and determine expressions for the jet quantities like speed, stretching rate, radius, strain rate, and tensile force. These quantities are calculated for different values of the parameters such as those due to the ambient flow and viscoelasticity. We find that the ambient flow is stabilizing so that the strain rate, stretching rate, speed, and tensile force decrease with increase in the ambient flow effect, while the jet radius increases with such effect. The viscoelasticity of the fiber jet reduces notably the stabilizing effect of the ambient flow on the jet quantities, but the stabilizing effect of the ambient flow increases with the arc length of the jet centerline.

References

1.
Padron
,
S.
,
Fuentes
,
A.
,
Caruntu
,
D.
, and
Lozano
,
K.
,
2013
, “
Experimental Study of Nanofiber Production Through Forcespinning
,”
J. Appl. Phys.
,
113
(
2
), p.
024318
.10.1063/1.4769886
2.
Vasquez
,
B.
,
Vasquez
,
H.
, and
Lozano
,
K.
,
2012
, “
Preparation and Characterization of Polyvinylidene Fluoride Nanofibrous Membranes by Forcespinning
,”
Polym. Eng. Sci.
,
52
(
10
), pp.
2260
2265
.10.1002/pen.23169
3.
Altecor
,
A.
,
Mao
,
Y.
, and
Lozano
,
K.
,
2012
, “
Large-Scale Synthesis of Tin-Doped Indium Oxide Nanofibers Using Water as Solvent
,”
Funct. Mater. Lett.
,
5
(
3
), p.
1250020
.10.1142/S1793604712500208
4.
Reneker
,
D. H.
, and
Chun
,
I.
,
1996
, “
Nanometer Diameter Fibers of Polymers, Produced by Electrospinning
,”
Nanotechnology
,
7
(
3
), pp.
216
223
.10.1088/0957-4484/7/3/009
5.
Fong
,
H.
,
Chun
,
I.
, and
Reneker
,
D. H.
,
1999
, “
Beaded Nanofibers Formed During Electrospinning
,”
Polymer
,
40
(
16
), pp.
4585
4592
.10.1016/S0032-3861(99)00068-3
6.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Fong
,
H.
, and
Koombhongse
,
S.
,
2000
, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning
,”
J. Appl. Phys.
,
87
(
9
), pp.
4531
4547
.10.1063/1.373532
7.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. P.
,
2001
, “
Electrospinning and Electrically Forced Jets—I: Stability Theory
,”
Phys. Fluids
,
13
(
8
), pp.
2201
2220
.10.1063/1.1383791
8.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. P.
,
2001
, “
Electrospinning and Electrically Forced Jets—II: Applications
,”
Phys. Fluids
,
13
(
8
), pp.
2221
2236
.10.1063/1.1384013
9.
Wallwork
,
I. M.
,
Decent
,
S. P.
,
King
,
A. C.
, and
Schulkes
,
R. M. S. M.
,
2002
, “
The Trajectory and Stability of a Spiraling Liquid Jet: Part I. Inviscid Theory
,”
J. Fluid Mech.
,
459
, pp.
43
65
.10.1017/S0022112002008108
10.
Feng
,
J. J.
,
2002
, “
The Stretching of an Electrified Non-Newtonian Jet: A Model for Electrospinning
,”
Phys. Fluids
,
14
(
11
), pp.
3912
3926
.10.1063/1.1510664
11.
Feng
,
J. J.
,
2003
, “
Stretching of a Straight Electrically Charged Viscoelastic Jet
,”
J. Non-Newtonian Fluid Mech.
,
116
(
1
), pp.
55
70
.10.1016/S0377-0257(03)00173-3
12.
Uddin
,
J.
,
Decent
,
S. P.
, and
Simmons
,
M. J. H.
,
2006
, “
The Instability of Shear Thinning and Shear Thickening Spiraling Liquid Jets: Linear Theory
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
968
975
.10.1115/1.2238876
13.
Uddin
,
J.
,
Decent
,
S. P.
, and
Simmons
,
M. J. H.
,
2008
, “
Non-Linear Waves Along a Rotating Non-Newtonian Liquid Jet
,”
Int. J. Eng. Sci.
,
46
(
12
), pp.
1253
1265
.10.1016/j.ijengsci.2008.06.016
14.
Părău
,
E. I.
,
Decent
,
S. P.
,
Simmons
,
M. J. H.
,
Wong
,
D. C. Y.
, and
King
,
A. C.
,
2007
, “
Nonlinear Viscous Liquid Jets From a Rotating Orifice
,”
J. Eng. Math.
,
57
(
2
), pp.
159
179
.10.1007/s10665-006-9118-2
15.
Decent
,
S. P.
,
King
,
A. C.
,
Simmons
,
M. J. H.
,
Părău
,
E. I.
,
Wallwork
,
I. M.
,
Gurney
,
C. J.
, and
Uddin
,
J.
,
2009
, “
The Trajectory and Stability of Spiraling Liquid Jet: Viscous Theory
,”
Appl. Math. Modell.
,
33
(
12
), pp.
4283
4302
.10.1016/j.apm.2009.03.011
16.
Uddin
,
J.
, and
Decent
,
S. P.
,
2009
, “
Curved Non-Newtonian Liquid Jets With Surfactants
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091203
.10.1115/1.3203202
17.
Hawkins
,
V. L.
,
Gurney
,
C. J.
,
Decent
,
S. P.
,
Simmons
,
M. J. H.
, and
Uddin
,
J.
,
2010
, “
Unstable Waves on a Curved Non-Newtonian Liquid Jet
,”
J. Phys. A
,
43
(
5
), p.
055501
.10.1088/1751-8113/43/5/055501
18.
Padron
,
S.
,
Caruntu
,
I. D.
, and
Lozano
,
K.
,
2011
, “
On 2D Forcespinning Modeling
,”
ASME Paper No. IMECE2011-64823
.10.1115/IMECE2011-64823
19.
Riahi
,
D. N.
,
2011
, “
On Spatial Stability of an Electrically Forced Non-Axisymmetric Jet With Curved Centerline
,”
Appl. Math. Modell.
,
35
(
3
), pp.
1124
1133
.10.1016/j.apm.2010.08.001
20.
Riahi
,
D. N.
,
2017
, “
Modeling and Computation of Nonlinear Rotating Polymeric Jets During Forcespinning
,”
Int. J. Non-Linear Mech.
,
92
, pp.
1
7
.10.1016/j.ijnonlinmec.2017.03.004
21.
Riahi
,
D. N.
,
2018
, “
Rotating Fiber Jets During Forcespinning With Aerodynamic Effect
,”
J. Eng. Mech.
,
144
(
8
), p.
04018069
.10.1061/(ASCE)EM.1943-7889.0001473
22.
Riahi
,
D. N.
,
2018
, “
Nonlinear Rotating Viscoelastic Jets During Forcespinning Process
,”
Proc. R. Soc. London, Ser. A
,
474
(
2220
), p.
20180346
.10.1098/rspa.2018.0346
23.
Taghavi
,
S. M.
, and
Larson
,
R. G.
,
2014
, “
Regularized Thin-Fiber Model for Nanofiber Formation by Centrifugal Spinning
,”
Phys. Rev. E
,
89
, p.
023011
.10.1103/PhysRevE.89.023011
24.
Taghavi
,
S. M.
, and
Larson
,
R. G.
,
2014
, “
Erratum: Regularized Thin-Fiber Model for Nanofiber Formation by Centrifugal Spinning
,”
Phys. Rev. E
,
89
(
5
), p.
059903(E)
.10.1103/PhysRevE.89.059903
25.
Alsharif
,
A. M.
, and
Uddin
,
J.
,
2015
, “
Instability of Viscoelastic Curved Liquid Jets With Surfactants
,”
J. Non-Newtonian Fluid Mech.
,
216
, pp.
1
12
.10.1016/j.jnnfm.2014.12.001
26.
Chahhahra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
27.
Giesekus
,
H.
,
1982
, “
A Simple Constitutive Equations for Polymer Fluids Based on the Concept of Configuration-Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
,
11
(
1–2
), pp.
69
109
.10.1016/0377-0257(82)85016-7
28.
Bird
,
R. B.
,
Curtiss
,
C. F.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
, “
Dynamics of Polymeric Liquids
,”
Fluid Mechanics
, Vol.
1
,
Wiley
,
New York
.
29.
Carroll
,
C. P.
, and
Joo
,
Y. L.
,
2006
, “
Electrospinning of Viscoelastic Boger Fluids: Modeling and Experiments
,”
Phys. Fluids
,
18
(
5
), p.
053102
.10.1063/1.2200152
30.
Denn
,
M. M.
,
1983
, “
Fiber Spinning
,”
Computational Analysis of Polymer Processing
,
J. R. A.
Pearson
and
S. M.
Richardson
, eds.,
Applied Science Publishers
,
New York
, Chap. 6.
31.
Ascher
,
U. M.
,
Mathheij
,
R. M. M.
, and
Russell
,
R. D.
,
1995
,
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
,
SIAM Publication
,
Philadelphia, PA
.
You do not currently have access to this content.