Abstract

Jet impingement is a technique for removing heat efficiently. A liquid jet impingement on a cone heat sink was investigated numerically to explore the effect of filet profiles at the top and bottom edge of conical protuberances on fluid flow and heat transfer. An adopted turbulence model was validated through an experiment as described in the literature. Numerical results of pressure coefficient and Nusselt number were obtained for cases with and without filet profiles for variable jet Reynolds numbers and conical angles. Results showed that the flow and heat transfer of conical protuberances with small tip filet profiles are similar to that of the original cone. Pressure coefficient curves are similar to that of convex surfaces, and the average heat transfer slightly increases when the radius of the tip filet profiles exceeds 1 mm. A small filet profile of a conical bottom edge can improve the average Nusselt number. A secondary jet that enhanced the overall heat transfer was demonstrated, and the heat transfers of convex surfaces, as the comparison, with small angles were enhanced in most cases.

References

1.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2005
, “
Experimental Investigation of Flow Structure and Nusselt Number in a Low-Speed Linear Blade Passage With and Without Leading-Edge Fillets
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
499
512
.10.1115/1.1865218
2.
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2007
, “
Experimental Investigation of Secondary Flow Structure in a Blade Passage With and Without Leading Edge Fillets
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
253
262
.10.1115/1.2427075
3.
Raghavan
,
V.
, and
Premachandran
,
B.
,
2008
, “
Microscale Flow Through Channels With a Right-Angled Bend: Effect of Fillet Radius
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
101207
.10.1115/1.2969455
4.
Ma
,
T.
,
Xin
,
F.
,
Li
,
L.
,
Xu
,
X. Y.
,
Chen
,
Y. T.
, and
Wang
,
Q. W.
,
2015
, “
Effect of Fin-Endwall Fillet on Thermal Hydraulic Performance of Airfoil Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
89
, pp.
1087
1095
.10.1016/j.applthermaleng.2015.04.022
5.
Saleha
,
N.
,
Fadèla
,
N.
, and
Abbès
,
A.
,
2015
, “
Improving Cooling Effectiveness by Use of Chamfers on the Top of Electronic Components
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1067
1076
.10.1016/j.microrel.2015.04.006
6.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Jiang
,
Y. R.
,
2016
, “
Thermal Performances of Parallelogram Channels With Skewed Ribs and Tilted Three Dimensional Fillets
,”
Int. J. Heat Mass Transfer
,
96
, pp.
548
564
.10.1016/j.ijheatmasstransfer.2016.01.062
7.
Hrycak
,
P.
,
1984
, “
Heat Transfer From Impinging Jets to a Flat Plate With Conical and Ring Protuberances
,”
Int. J. Heat Mass Transfer
,
27
(
11
), pp.
2145
2154
.10.1016/0017-9310(84)90201-1
8.
Rahimi
,
M.
, and
Irani
,
M.
,
2012
, “
Experimental Study of Slot Jet Impingement Heat Transfer on a Wedge-Shaped Surface
,”
Heat Mass Transfer
,
48
(
12
), pp.
2095
2101
.10.1007/s00231-012-1054-2
9.
Rahimi
,
M.
, and
Mazraeh
,
A. E.
,
2014
, “
Heat Transfer From an Open-Wedge Cavity to a Symmetrically Impinging Slot Air Jet
,”
Heat Mass Transfer
,
50
(
8
), pp.
1137
1143
.10.1007/s00231-014-1328-y
10.
Wang
,
J.
, and
Wang
,
X.
,
2016
, “
The Heat Transfer Optimization of Conical Fin by Shape Modification
,”
Chin. J. Chem. Eng.
,
24
(
8
), pp.
972
978
.10.1016/j.cjche.2016.05.010
11.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.10.1016/j.applthermaleng.2017.07.181
12.
Yemin
,
O.
,
Wae-Hayee
,
M.
,
Narato
,
P.
,
Yerane
,
K.
,
Abdullah
,
K.
, and
Nuntadusit
,
C.
,
2017
, “
The Effect of Conical Dimple Spacing on Flow Structure and Heat Transfer Characteristics of Internal Flow Using CFD
,”
IOP Conf. Series: Mater. Sci. Eng.
,
243
, p.
012002
.10.1088/1757-899X/243/1/012002
13.
Abuşka
,
M.
,
2018
, “
Energy and Exergy Analysis of Solar Air Heater Having New Design Absorber Plate With Conical Surface
,”
Appl. Therm. Eng.
,
131
, pp.
115
124
.10.1016/j.applthermaleng.2017.11.129
14.
Guan
,
T.
,
Zhang
,
J. Z.
, and
Shan
,
Y.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 2: Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
339
355
.10.1016/j.ijheatmasstransfer.2016.10.048
15.
Guan
,
T.
,
Zhang
,
J. Z.
,
Shan
,
Y.
, and
Hang
,
J.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 1: Experimental Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
329
338
.10.1016/j.ijheatmasstransfer.2016.06.101
16.
Tang
,
Z. G.
,
Liu
,
Q. Q.
,
Li
,
H.
, and
Min
,
X., T.
,
2017
, “
Numerical Simulation of Heat Transfer Characteristics of Jet Impingement With a Novel Single Cone Heat Sink
,”
Appl. Therm. Eng.
,
127
, pp.
906
914
.10.1016/j.applthermaleng.2017.08.099
17.
Metikoš-Huković
,
M.
,
Babić
,
R.
,
Škugor Rončević
,
I.
, and
Grubač
,
Z.
,
2011
, “
Corrosion Resistance of Copper–Nickel Alloy Under Fluid Jet Impingement
,”
Desalination
,
276
(
1–3
), pp.
228
232
.10.1016/j.desal.2011.03.056
18.
ANSYS
,
2012
, “Fluent 14.5: User's Guide,” ANSYS Inc.,
Canonsburg, PA
.
19.
Elebiary
,
K.
, and
Taslim
,
M. E.
,
2012
, “
Experimental/Numerical Crossover Jet Impingement in an Airfoil Leading-Edge Cooling Channel
,”
ASME J. Turbomach.
,
135
(
1
), p.
011037
.10.1115/1.4006420
20.
Bhagwat
,
A. B.
, and
Sridharan
,
A.
,
2016
, “
Numerical Simulation of Oblique Air Jet Impingement on a Heated Flat Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011017
.10.1115/1.4034913
21.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.10.1016/j.ijheatmasstransfer.2013.12.006
22.
Zhang
,
D.
,
Qu
,
H.
,
Lan
,
J.
,
Chen
,
J.
, and
Xie
,
Y. H.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Protrusioned Surface
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
18
28
.10.1016/j.ijheatmasstransfer.2012.11.019
23.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
160
169
.10.1016/S0142-727X(96)00136-1
24.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Trans
fer,
111
(
4
), pp.
1096
1098
.10.1115/1.3250776
25.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
,
Mshvidobadze
,
Y. M.
, and
Sharov
,
K. A.
,
2009
, “
Impingement of an Impact Jet Onto a Spherical Cavity. Flow Structure and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2498
2506
.10.1016/j.ijheatmasstransfer.2009.01.018
You do not currently have access to this content.