Abstract

With the increased prominence of multicopter micro-aerial vehicles, more importance has been placed on the aerodynamic and acoustic performance of these systems, as their small-scale and lower Reynolds number regime provide results that are different from full-scale rotors. A computational methodology was employed in order to study the aerodynamic and aeroacoustic performance from different small-scale rotors used in a multicopter configuration. Three rotor design variables (twist, taper, and pitch) were investigated in order to understand their influence on aerodynamic and acoustic performance of a hovering rotor. Variables such as rotor rotation rate and rotor radius were kept constant. Common aerodynamic performance metrics such as the ratio of coefficient of thrust to coefficient of power and figure of merit (FM) were used to assess aerodynamic hover performance of the designed rotors. Acoustic performance was assessed by recording acoustic pressure in the far-field at two separate receivers. Acoustic results are presented in the frequency domain as one-third octave band data and as overall sound pressure level (SPL). Flow fields and pressure contours were calculated and displayed in order to help explain aerodynamic and acoustic results. From the results, insights are provided for rotor designs that are more aerodynamically and acoustically efficient in hover. Specifically, rotors that provided lower values of disk loading and higher values of power loading were typically more acoustically efficient. Using greater rotor twist and taper increased both aerodynamic and acoustic performance.

References

1.
Shen
,
L.
,
2016
, “
Drone Sales Have Tripled in the Last Year According to NPD | Fortune
,” Fortune Magazine, New York, accessed June 28, 2018, http://fortune.com/2016/05/25/drones-ndp-revenue/
2.
Kesselman
,
S.
,
2014
, “
The First 1,000 Commercial UAS Exemptions
,” Association for Unmanned Vehicle Systems International, pp.
1
22
, accessed Apr. 19, 2020, https://higherlogicdownload.s3.amazonaws.com/AUVSI/b657da80-1a58-4f8f-9971-7877b707e5c8/UploadedFiles/ZAvlBnqWSeSYXPsnKkoc_Section333 Report_online022516.pdf
3.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
, Cambridge University Press, New York.
4.
112th Congress
,
2012
, “
Public Law 112–95
,” U.S. Federal Government, Washington, DC.
5.
Federal Aviation Administration
,
2015
, “
State and Local Regulation of Unmanned Aircraft Systems (UAS) Fact Sheet
,” U.S. FEderal Government, Washington, DC.
6.
International Civil Aviation Organization
,
2011
, “
Unmanned Aircraft Systems (UAS)
,” International Civil Aviation Organization, Montreal, QC, Canada.
7.
United States EPA, “
Clean Air Act Title IV—Noise Pollution
,” U.S. Federal Government, Washington, DC.
8.
Kloet
,
N.
,
Watkins
,
S.
, and
Clothier
,
R.
,
2017
, “
Acoustic Signature Measurement of Small Multi-Rotor Unmanned Aircraft Systems
,”
Int. J. Micro Air Veh.
,
9
(
1
), pp.
3
14
.10.1177/1756829316681868
9.
Christian
,
A. W.
, and
Cabell
,
R.
,
2017
, “
Initial Investigation Into the Psychoacoustic Properties of Small Unmanned Aerial System Noise
,”
23rd AIAA/CEAS Aeroacoustics Conference
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
10.
Ramasamy
,
M.
,
Johnson
,
B.
, and
Leishman
,
J. G.
,
2008
, “
Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor
,”
J. Am. Helicopter Soc.
,
53
(
4
), pp.
412
428
.10.4050/JAHS.53.412
11.
Hein
,
B. R.
, and
Chopra
,
I.
,
2007
, “
Hover Performance of a Micro Air Vehicle: Rotors at Low Reynolds Number
,”
J. Am. Helicopter Soc.
,
52
(
3
), pp.
254
262
.10.4050/JAHS.52.254
12.
Winslow
,
J.
,
Otsuka
,
H.
,
Govindarajan
,
B.
, and
Chopra
,
I.
,
2018
, “
Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104–105)
,”
J. Aircr.
,
55
(
3
), pp.
1050
1061
.10.2514/1.C034415
13.
Anderson
,
J.
,
2011
,
Fundamentals of Aerodynamics
,
McGraw-Hill
,
New York
.
14.
Schmitz
,
F. H.
,
1991
,
Aeroacoustics of Flight Vehicles: Theory and Practice
,
Hampton
,
VA
.
15.
Tinney
,
C. E.
, and
Sirohi
,
J.
,
2018
, “
Multirotor Drone Noise at Static Thrust
,”
AIAA J.
,
56
(
7
), pp.
2816
2826
.10.2514/1.J056827
16.
Intaratep
,
N.
,
Alexander
,
W. N.
,
Devenport
,
W. J.
,
Grace
,
S. M.
, and
Dropkin
,
A.
,
2016
, “
Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions
,”
22nd AIAA/CEAS Aeroacoustics Conference
, Lyon, France, May 30, pp.
1
14
.10.2514/6.2016-2873
17.
Brooks
,
T. F.
,
Pope
,
D. S.
, and
Marcolini
,
M. A.
,
1989
,
Airfoil Self-Noise and Prediction
,
Hampton
,
VA
.
18.
Wright
,
S. E.
,
1976
, “
The Acoustic Spectrum of Axial Flow Machines
,”
J. Sound Vib.
,
45
(
2
), pp.
165
223
.10.1016/0022-460X(76)90596-4
19.
Zawodny
,
N. S.
,
Boyd
,
D. D.
, Jr.
, and
Burley
,
C. L.
,
2016
, “
Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components
,”
AHS International 72nd Annual Forum
, West Palm Beach, FL, May 17–19, pp.
34
48
.
20.
Zawodny
,
N. S.
, and
Boyd
,
D. D.
, Jr
,
2017
, “
Investigation of Rotor-Airframe Interaction Noise Associated With Small-Scale Rotary-Wing Unmanned Aircraft Systems
,”
AHS Forum-73
, Fort Worth, TX, May 9–11, pp.
66
82
.
21.
Karthik
,
K.
,
Vengadesan
,
S.
, and
Bhattacharyya
,
S. K.
,
2018
, “
Prediction of Flow Induced Sound Generated by Cross Flow Past Finite Length Circular Cylinders
,”
J. Acoust. Soc. Am.
,
143
(
1
), pp.
260
270
.10.1121/1.5021243
22.
Lu
,
Z.
,
Liu
,
Y.
,
Debiasi
,
M.
, and
Khoo
,
B. C.
,
2016
, “
Acoustic Characteristics of a Multi-Rotor MAV and Its Noise Reduction Technology
,”
INTER-NOISE Conference Proceedings
, Hamburg, Germany, Aug. 21–24, pp.
725
735
.
23.
Wang
,
Z.
,
Pandey
,
A.
,
Sutkowy
,
M.
,
Harter
,
B.
,
Mccrink
,
M. H.
,
Gregory
,
J. W.
, and
Zhuang
,
M.
,
2018
, “
A Comprehensive Approach to Study Aerodynamic and Aeroacoustic Performances of Small Multicopter Unmanned Aerial Systems
,”
2018 AIAA Aerospace Sciences Meeting
, Kissimmee, FL, Jan. 8–12, Paper No. 0268.10.2514/6.2018-0268
24.
Wisniewski
,
C.
,
Byerley
,
A.
,
Van Treuren
,
K. W.
, and
Hays
,
A.
,
2017
, “
A Comparison of the Aerodynamic Performance and Aeroacoustic Behavior of Commercial and Custom Designed Quadcopter Propellers
,”
55th AIAA Aerospace Sciences Meeting
, Grapevine, TX, Jan. 9–13, Paper No. 1173.10.2514/6.2017-1173
25.
Benedict
,
M.
,
Winslow
,
J.
,
Hasnain
,
Z.
, and
Chopra
,
I.
,
2015
, “
Experimental Investigation of Micro Air Vehicle Scale Helicopter Rotor in Hover
,”
Int. J. Micro Air Veh.
,
7
(
3
), pp.
231
255
.10.1260/1756-8293.7.3.231
26.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of the First AFOSR International Conference on DNS/LES
, Greyden Press, Ruston, LA, Aug. 4–8, pp.
137
147.
27.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
28.
Yoon
,
S.
,
Diaz
,
P. V.
,
Boyd
,
D. D.
,
Chan
,
W. M.
, and
Theodore
,
C. R.
,
2017
, “
Computational Aerodynamic Modeling of Small Quadcopter Vehicles
,”
AHS Forum 73
, Fort Worth, TX, May 9–11, pp.
371
386
.
29.
Wilcox
,
D. C.
,
2008
, “
Formulation of the K-w Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
30.
Brentner
,
K. S.
, and
Farassat
,
F.
,
1998
, “
Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces
,”
AIAA J.
,
36
(
8
), pp.
1379
1386
.10.2514/2.558
31.
Brentner
,
K. S.
, and
Farassat
,
F.
,
2003
, “
Modeling Aerodynamically Generated Sound of Helicopter Rotors
,”
Prog. Aerosp. Sci.
,
39
(
2–3
), pp.
83
120
.10.1016/S0376-0421(02)00068-4
32.
Suresh
,
T.
,
Szulc
,
O.
,
Flaszynski
,
P.
, and
Doerffer
,
P.
,
2018
, “
Prediction of Helicopter Rotor Noise in Hover Using FW-H Analogy
,”
XXIII Fluid Mechanics Conference (KKMP 2018)
, Zawiercie, Poland, Sept. 9–12, Paper No. 012041.
33.
Sjöberg
,
E.
,
2016
, “
Implementation of Aeroacoustic Methods in OpenFOAM
,” Stockholm, Sweden.
34.
Choi
,
W.-S.
,
Choi
,
Y.
,
Hong
,
S.-Y.
,
Song
,
J.-H.
,
Kwon
,
H.-W.
, and
Jung
,
C.-M.
,
2016
, “
Turbulence-Induced Noise of a Submerged Cylinder Using a Permeable FWeH Method
,”
Int. J. Nav. Archit. Ocean Eng.
,
8
(
3
), pp.
235
242
.10.1016/j.ijnaoe.2016.03.002
35.
Wang
,
Z.
,
Henricks
,
Q.
,
Zhuang
,
M.
,
Pandey
,
A.
,
Sutkowy
,
M.
,
Harter
,
B.
,
Mccrink
,
M.
, and
Gregory
,
J.
,
2019
, “
Impact of Rotor—Airframe Orientation on the Aerodynamic and Aeroacoustic Characteristics of Small Unmanned Aerial Systems
,”
Drones
,
3
(
3
), p.
56
.10.3390/drones3030056
36.
Henricks
,
Q. M.
,
2019
,
Computational Aerodynamic and Aeroacoustic Study of Small-Scale Rotor Geometries
,
The Ohio State University
, Columbus, OH.
You do not currently have access to this content.