Abstract

Experimental analysis of a bulb turbine during the start-up sequence and in speed-no-load (SNL) operating conditions was performed in a closed-loop circuit. This study focuses on pressure fluctuations across the machine. The turbine was equipped with 26 pressure sensors on one runner blade and 16 in the stationary reference frame. Strain measurements were also performed on two other runner blades. The first section of this analysis focuses on SNL operating conditions using standard Fourier data processing. The results show that three rotating flow phenomena are only present close to the runner. One of them corresponds to the interblade vortex at f/fr=4.00, whereas the two others, which have subsynchronous runner frequencies, are consistent with a possible rotating stall. These phenomena, which exist predominantly on the suction side, have a strong influence on runner blade strain. The second section of the study concentrates on a time-frequency analysis using the Morlet wavelet transform. It reveals that the two subsynchronous flow structures appear at the end of the start-up and exhibit bistable behavior. As well, each of these phenomena acts differently on the blade. These phenomena also interact with the interblade vortex.

References

1.
REN21
,
2018
, “
Renewables Global Status Report
,” REN21 Secretariat, Paris, France, Report.
2.
International Hydropower Association
,
2018
, “
Hydropower Status Report 2018
,” IHA Central Office, London, Report No. 5.
3.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Michel
,
C. J.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.10.1080/00221686.2012.732971
4.
Gagnon
,
M.
,
Tahan
,
S. A.
,
Bocher
,
P.
, and
Thibault
,
D.
,
2010
, “
Impact of Startup Scheme on Francis Runner Life Expectancy
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012107
.10.1088/1755-1315/12/1/012107
5.
Löfflad
,
J.
, and
Eissner
,
M.
,
2014
, “
Life Time Assessment and Plant Operation Optimization Based on Geometry Scan and Strain Gauge Testing—START/STOP Optimization
,”
10th International Conference of Hydraulic Measurement and Efficiency
, Itajubá, Brazil, Sept. 16–19, pp.
1
11
.https://smartproof.cenveo.com/smartproof/common/AS/editor?pwd=a564b66afcc3
6.
Seidel
,
U.
,
Mende
,
C.
,
Hübner
,
B.
,
Weber
,
W.
, and
Otto
,
A.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032054
.10.1088/1755-1315/22/3/032054
7.
Fisher
,
R. K.
,
Seidel
,
U.
,
Grosse
,
G.
,
Gfeller
,
W.
, and
Klinger
,
R.
,
2002
, “
A Case Study in Resonant Hydroelastic Vibration: The Causes of Runner Cracks and the Solutions Implemented for the Xiaolangdi Hydroelectric Project
,”
Proceedings of the XXIst IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Suisse, Sept. 9–12, pp.
1
11
.
8.
Coulaud
,
M.
,
Lemay
,
J.
, and
Deschenes
,
C.
,
2019
, “
Analysis of the Runner Behavior During the Start-Up Sequence in a Bulb Turbine Model
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081106
.10.1115/1.4041892
9.
Staubli
,
T.
,
Senn
,
F.
, and
Sallaberger
,
M.
,
2008
, “
Instability of Pump-Turbines During Start-Up in Turbine Mode
,”
Conference Proceedings, HYDRO 2008
, Aqua-Media International, Ljubljana, Slovenia, Oct. 6–8, pp.
1
8
.https://www.researchgate.net/publication/237241545_Instability_of_Pump-Turbines_during_Start-up_in_Turbine_Mode
10.
Li
,
Z.
,
Bi
,
H.
,
Wang
,
Z.
, and
Yao
,
Z.
,
2016
, “
Three-Dimensional Simulation of Unsteady Flows in a Pump-Turbine During Start-Up Transient Up to Speed No-Load Condition in Generating Mode
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
570
585
.10.1177/0957650916646911
11.
Nicolle
,
J.
,
Morissette
,
J. F.
, and
Giroux
,
A. M.
,
2012
, “
Transient CFD Simulation of a Francis Turbine Startup
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062014
.10.1088/1755-1315/15/6/062014
12.
Nicolle
,
J.
,
Giroux
,
A. M.
, and
Morissette
,
J. F.
,
2014
, “
CFD Configurations for Hydraulic Turbine Startup
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032021
.10.1088/1755-1315/22/3/032021
13.
Du
,
C.
,
Gui
,
W.
, and
Hu
,
Z.
,
2012
, “
Transient Hydraulic Pressure Fluctuation Analysis of a Hydroturbine Via Ensemble Empirical Mode Decomposition
,”
Second International Conference on Electronic & Mechanical Engineering and Information Technology (
Vol.
24
of Advances in Intelligent Systems Research), Atlantis Press, Atlantis Press, Shenyang, China, Sept. 7, pp.
1755
1760
.
14.
Trivedi
,
C.
,
Gogstad
,
P. J.
, and
Dahlhaug
,
O. G.
,
2017
, “
Investigation of the Unsteady Pressure Pulsations in the Prototype Francis Turbines During Load Variation and Startup
,”
J. Renewable Sustainable Energy
,
9
(
6
), p.
064502
.10.1063/1.4994884
15.
Valentín
,
D.
,
Presas
,
A.
,
Bossio
,
M.
,
Egusquiza
,
M.
, and
Valero
,
C.
,
2018
, “
Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges
,”
Sensors
,
18
(
1
), p.
19
.10.3390/s18010174
16.
Dehkharqani
,
A. S.
,
Engström
,
F.
,
Aidanpää
,
J.-O.
, and
Cervantes
,
M. J.
,
2019
, “
Experimental Investigation of a 10 MW Prototype Kaplan Turbine During Start-Up Operation
,”
Energies
,
12
(
23
), p.
4582
.10.3390/en12234582
17.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Ole
,
D. G.
,
2014
, “
Experimental Investigations of Transient Pressure Variations in a High Head Model Francis Turbine During Start-Up and Shutdown
,”
J. Hydrodyn., Ser. B
,
26
(
2
), pp.
277
290
.10.1016/S1001-6058(14)60031-7
18.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Dahlhaug
,
O. G.
, and
Gandhi
,
B. K.
,
2015
, “
Experimental Investigation of a High Head Francis Turbine During Spin-No-Load Operation
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061106
.10.1115/1.4029729
19.
Goyal
,
R.
,
Gandhi
,
B. K.
, and
Cervantes
,
M. J.
,
2019
, “
Measurements on a Model Francis Turbine During Start-Stop
,”
Int. J. Fluid Mach. Syst.
,
12
(
3
), pp.
217
227
.10.5293/IJFMS.2019.12.3.217
20.
Goyal
,
R.
,
Cervantes
,
M. J.
, and
Gandhi
,
B. K.
,
2020
, “
Synchronized PIV and Pressure Measurements on a Model Francis Turbine During Start-Up
,”
J. Hydraul. Res.
,
58
(
1
), pp.
70
86
.10.1080/00221686.2018.1555551
21.
Fraser
,
R.
,
Coulaud
,
M.
,
Aeschlimann
,
V.
,
Lemay
,
J.
, and
Deschenes
,
C.
,
2016
, “
Method for Experimental Investigation of Transient Operation on Laval Test Stand for Model Size Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062006
.10.1088/1755-1315/49/6/062006
22.
Půlpitel
,
L.
,
1993
, “
The Dynamic Behavior of a Kaplan Turbine Operating Under Non-Standard Conditions
,”
Sixth International Meeting of the IAHR WG1
, Vol.
6–4
, Lausanne, Suisse, p.
8
.
23.
Půlpitel
,
L.
,
Skoták
,
A.
, and
Koutník
,
J.
,
1996
, “
Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating Under Off-Cam High Swirl Flow Conditions
,”
Hydraulic Machinery and Cavitation
,
E.
Cabrera
,
V.
Espert
, and
F.
Martínez
, eds.,
Springer
,
The Netherlands
, pp.
925
934
.
24.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
,”
ASME J. Fluids Eng.
,
140
(
11
), p. 111104.10.1115/1.4039713
25.
Hasmatuchi
,
V.
,
Roth
,
S.
,
Botero
,
F.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2010
, “
High-Speed Flow Visualization in a Pump-Turbine Under Off-Design Operating Conditions
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012059
.10.1088/1755-1315/12/1/012059
26.
Morissette
,
J. F.
, and
Nicolle
,
J.
,
2019
, “
Simulation of Stochastic Pressure Loads on a Medium Head Francis Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
405
, p.
012027
.10.1088/1755-1315/405/1/012027
27.
Deniz
,
S.
,
Rio
,
A. D.
, and
Casartelli
,
E.
,
2019
, “
Experimental and Numerical Investigation of the Speed-No-Load Instability of a Low Specific Speed Pump-Turbine With Focus on the Influence of Turbulence Models
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
, p.
082005
.10.1088/1755-1315/240/8/082005
28.
Hosseinimanesh
,
H.
,
Devals
,
C.
,
Nennemann
,
B.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2017
, “
A Numerical Study of Francis Turbine Operation at No-Load Condition
,”
ASME J. Fluids Eng.
,
139
(
1
), p. 011104.10.1115/1.4034422
29.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062017
.10.1088/1755-1315/49/6/062017
30.
Goyal
,
R.
,
Cervantes
,
M. J.
, and
Gandhi
,
B. K.
,
2017
, “
Vortex Rope Formation in a High Head Model Francis Turbine
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041102
.10.1115/1.4035224
31.
Coulaud
,
M.
,
Fraser
,
R.
,
Lemay
,
J.
,
Duquesne
,
P.
,
Aeschlimann
,
V.
, and
Deschênes
,
C.
,
2016
, “
Preliminary Investigation of Flow Dynamics During the Start-Up of a Bulb Turbine Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062024
.
32.
Taraud
,
J.-P.
,
2014
, “
Recouvrement de Géométries Complexes et Applications Pour L'étude D'une Turbine Hydraulique de Type Bulbe
,” M.Sc. thesis, Université Laval, Quebec, Canada.
33.
Lemay
,
J.
,
2017
, “
Mesure, Mécatronique et Traitement de Données
,”
Les Éditions JFD
, Montréal, QC, Canada.
34.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2011
,
Random Data: Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
Hoboken, NJ
.
35.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Amer. Meteor. Soc.
,
79
(
1
), pp.
61
78
.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
36.
Farge
,
M.
,
1992
, “
Wavelet Transforms and Their Applications to Turbulence
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
395
458
.10.1146/annurev.fl.24.010192.002143
37.
Jordan
,
D.
,
Miksad
,
R. W.
, and
Powers
,
E. J.
,
1997
, “
Implementation of the Continuous Wavelet Transform for Digital Time Series Analysis
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1484
1494
.10.1063/1.1147636
38.
Mallat
,
S.
,
2008
,
A Wavelet Tour of Signal Processing: The Sparse Way
, 3rd ed.,
Academic Press
, Cambridge, MA.
You do not currently have access to this content.