Abstract

Cylinders with an elliptical, oblong, lenticular, sinus, or diamond transveral shape are very interesting geometries for the design of compact heat exchangers. This work investigates the role of the porosity and of the apex angle of diamond-shaped cylinders networks on the pressure losses, at moderate Reynolds numbers, inside microheat regenerators. The design of the geometry under test has been chosen so that the cross section of the flow remains almost constant along the path of the flow between cylinders. Experiments have been performed at 1Re30 and a porosity range 0.40<ε<0.90 for an apex angle of α=33deg. Numerical simulations have been conducted using the same Reynolds and porosity ranges but varying the apex angle 33degα90deg. Experimental measurements and dimensional analysis have shown that the friction factor can be affected by the porosity. Two-dimensional numerical simulations confirmed that the friction factor increases with the porosity but also with the apex angle. An analysis at the scale of a channel flanked by adjacent cylinders has provided an original correlation able to describe easily the evolution of the Poiseuille number and the collective effects on the drag coefficient as a function of α and ε. Such a diamond-shaped design is found to induce much lower Poiseuille numbers than those expected from conventional stacked spheres, woven wires, and circular cylinders arrays. The findings of this study can help for better understanding the optimization of low pressure drop regenerators and how to reduce associated hydraulic power.

References

1.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.10.1016/S0065-2717(08)70038-8
2.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.10.1016/0301-9322(82)90029-5
3.
Metzger
,
D.
,
Berry
,
R.
, and
Bronson
,
J.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.10.1115/1.3245188
4.
Stanescu
,
G.
,
Fowler
,
A.
, and
Bejan
,
A.
,
1996
, “
The Optimal Spacing of Cylinders in Free-Stream Cross-Flow Forced Convection
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
311
317
.10.1016/0017-9310(95)00122-P
5.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
6.
Yeom
,
J.
,
Agonafer
,
D.
,
Han
,
J.
, and
Shannon
,
M.
,
2009
, “
Low Reynolds Number Flow Across an Array of Cylindrical Microposts in a Microchannel and Figure-of-Merit Analysis of Micropost-Filled Microreactors
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065025
.10.1088/0960-1317/19/6/065025
7.
Li
,
Q.
,
Chen
,
Z.
,
Flechtner
,
U.
, and
Warnecke
,
H.
,
1998
, “
Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
245
250
.10.1016/S0142-727X(98)00003-4
8.
Uzol
,
O.
, and
C
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
458
471
.10.1115/1.1860563
9.
Bahaidarah
,
H.
,
Anand
,
N.
, and
Chen
,
H.
,
2005
, “
A Numerical Study of Fluid Flow and Heat Transfer Over a Bank of Flat Tubes
,”
Numer. Heat Trans A-Appl.
,
48
(
4
), pp.
359
385
.10.1080/10407780590957134
10.
Molki
,
M.
,
Faghri
,
M.
, and
Ozbay
,
O.
,
1994
, “
A New Correlation for Pressure Drop in Arrays of Rectangular Blocks in Air-Cooled Electronic Units
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
856
861
.10.1115/1.2911861
11.
Chen
,
S.
, and
Jendrzejczyk
,
J.
,
1987
, “
Fluid Excitation Forces Acting on a Square Tube Array
,”
ASME J. Fluids Eng.
,
109
(
4
), pp.
415
423
.10.1115/1.3242682
12.
Bejan
,
A.
, and
Morega
,
A.
,
1993
, “
Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
75
81
.10.1115/1.2910672
13.
Sara
,
O.
,
2003
, “
Performance Analysis of Rectangular Ducts With Staggered Square Pin Fins
,”
Energy Convers. Manage.
,
44
, pp.
1787
1803
.10.1016/S0196-8904(02)00185-1
14.
Jeng
,
T.
, and
Tzeng
,
S.
,
2007
, “
Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in in-Line and Staggered Arrangements
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2364
2375
.10.1016/j.ijheatmasstransfer.2006.10.028
15.
Ruhlich
,
I.
, and
Quack
,
H.
,
2002
, “
Investigations on Regenerative Heat Exchangers
,”
Cryocoolers
10, ed.
R. G.
Ross
Jr., Springer, Boston, MA, pp.
265
274
.
16.
Sparrow
,
E.
, and
Grannis
,
V.
,
1991
, “
Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond-Shaped Pin Fins
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
589
600
.10.1016/0017-9310(91)90108-Q
17.
Chyu
,
M.
,
Hsing
,
Y.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.10.1115/1.2841414
18.
Tanda
,
G.
,
2001
, “
Heat Transfer and Pressure Drop in a Rectangular Channel With Diamond-Shaped Elements
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3529
3541
.10.1016/S0017-9310(01)00018-7
19.
Jeng
,
T.
,
2006
, “
Thermal Performance of in-Line Diamond-Shaped Pin Fins in a Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
33
(
9
), pp.
1139
1146
.10.1016/j.icheatmasstransfer.2006.06.001
20.
Vanapalli
,
S.
,
Ter Brake
,
H.
,
Jansen
,
H.
,
Burger
,
J.
,
Holland
,
H.
,
Veenstra
,
T.
, and
Elwenspoek
,
M.
,
2007
, “
Pressure Drop of Laminar Gas Flows in a Microchannel Containing Various Pillar Matrices
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1381
1386
.10.1088/0960-1317/17/7/021
21.
Rasouli
,
E.
, and
Narayanan
,
V.
,
2016
, “
Single-Phase Cryogenic Flow and Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Heat Transfer Eng.
,
37
(
11
), pp.
994
1011
.10.1080/01457632.2015.1098271
22.
Grannis
,
V.
, and
Sparrow
,
E.
,
1991
, “
Numerical Simulation of Fluid Flow Through an Array of Diamond-Shaped Pin Fins
,”
Numer. Heat Transfer A-Appl.
,
19
(
4
), pp.
381
403
.10.1080/10407789108944856
23.
Umeda
,
S.
, and
Torii
,
S.
,
2012
, “
Numerical and Experimental Study on Thermal Fluid Flow Over Twin Diamond-Shaped Cylinders in Free Stream
,”
15th International Symposium on Flow Visualization, Minsk
, Belarus, June 25–28, pp.
1
11
.
24.
Torii
,
S.
, and
Umeda
,
S.
,
2013
, “
Flip-Flop Flow Control Inside Streamwise Diverging Diamond-Shaped Cylinder Bundles With Concavities
,”
J. Flow Control, Meas. Visualization
,
01
(
03
), pp.
77
85
.10.4236/jfcmv.2013.13010
25.
Hirasawa
,
S.
,
Fujiwara
,
A.
,
Kawanami
,
T.
, and
Shirai
,
K.
,
2014
, “
Forced Convection Heat Transfer Coefficient and Pressure Drop of Diamond-Shaped Fin-Array
,”
J. Electron. Cooling Therm. Control
,
04
(
3
), pp.
78
85
.10.4236/jectc.2014.43009
26.
De Smet
,
J.
,
Gzil
,
P.
,
Vervoort
,
N.
,
Verelst
,
H.
,
Baron
,
G.
, and
Desmet
,
G.
,
2004
, “
Influence of the Pillar Shape on the Band Broadening and the Separation Impedance of Perfectly Ordered 2-d Porous Chromatographic Media
,”
Anal. Chem.
,
76
(
13
), pp.
3716
3726
.10.1021/ac049873s
27.
De Smet
,
J.
,
Gzil
,
P.
,
Vervoort
,
N.
,
Verelst
,
H.
,
Baron
,
G.
, and
Desmet
,
G.
,
2005
, “
On the Optimisation of the Bed Porosity and the Particle Shape of Ordered Chromatographic Separation Media
,”
J. Chromatogr. A
,
1073
(
1–2
), pp.
43
51
.10.1016/j.chroma.2004.10.008
28.
De Pra
,
M.
,
De Malsche
,
W.
,
Desmet
,
G.
,
Schoenmakers
,
P.
, and
Kok
,
W.
,
2007
, “
Pillar-Structured Microchannels for on-Chip Liquid Chromatography: Evaluation of the Permeability and Separation Performance
,”
J. Sep. Sci.
,
30
(
10
), pp.
1453
1460
.10.1002/jssc.200600468
29.
Rashidi
,
S.
,
Bovand
,
M.
,
Pop
,
I.
, and
Valipour
,
M.
,
2014
, “
Numerical Simulation of Forced Convective Heat Transfer Past a Square Diamond-Shaped Porous Cylinder
,”
Transp. Porous Med.
,
102
(
2
), pp.
207
225
.10.1007/s11242-014-0272-0
30.
Kays
,
W.
, and
London
,
A.
,
1964
, “Compact Heat Exchangers,”
McGraw-Hill
,
New York
.
31.
Gaddis
,
E.
, and
Gnielski
,
V.
,
1985
, “
Pressure Drop in Horizontal Cross Flow Across Tube Bundles
,”
Int. Chem. Eng.
,
25
(
1
), pp.
1
15
.
32.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.10.1115/1.1900139
33.
Kosar
,
A.
,
Schneider
,
B.
, and
Peles
,
Y.
,
2011
, “
Hydrodynamic Characteristics of Crossflow Over Mems-Based Pillars
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081201
.10.1115/1.4004366
34.
Tullius
,
J.
,
Tullius
,
T.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
35.
Rueda Villegas
,
L.
,
Colombet
,
D.
,
Guiraud
,
P.
,
Legendre
,
D.
,
Cazin
,
S.
, and
Cockx
,
A.
,
2019
, “
Image Processing for the Experimental Investigation of Dense Dispersed Flows: Application to Bubbly Flows
,”
Int. J. Multiphase Flow
,
111
, pp.
16
30
.10.1016/j.ijmultiphaseflow.2018.10.017
36.
Petersen
,
H.
,
1970
, “
The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures From 1 to 100 bar and From Room Temperature to About 1800 k
,” Riso National Laboratory, Roskilde, Denmark.
37.
Colin
,
S.
,
2005
, “
Rarefaction and Compressibility Effects on Steady or Transient Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
268
279
.10.1007/s10404-004-0002-y
38.
Mossaz
,
S.
,
Colombet
,
D.
,
Ledoux
,
G.
, and
Ayela
,
F.
,
2015
, “
Role of the Thermal Entrance Length on the Viscous Heating in Microchannels
,”
Microfluid. Nanofluid.
,
19
(
6
), pp.
1325
1333
.10.1007/s10404-015-1648-3
39.
Gedeon
,
D.
, and
Wood
,
J.
,
1996
, “
Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts
,” NASA, Washington, DC, Report No. NASA CR-198442.
40.
Costa
,
S.
,
Tutar
,
M.
,
Barreno
,
I.
,
Esnaola
,
J.
,
Barrutia
,
H.
,
Garcia
,
D.
,
Gonzalez
,
M.
, and
Prieto
,
J.
,
2014
, “
Experimental and Numerical Flow Investigation of Stirling Engine Regenerator
,”
Energy
,
72
, pp.
800
812
.10.1016/j.energy.2014.06.002
41.
Costa
,
S.
,
Barrutia
,
H.
,
Esnaola
,
J.
, and
Tutar
,
M.
,
2013
, “
Numerical Study of the Pressure Drop Phenomena in Wound Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manag.
,
67
, pp.
57
65
.10.1016/j.enconman.2012.10.014
42.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
43.
Sochinskii
,
A.
,
2018
, “
First Step Toward the Miniaturisation of Space Cryocoolers
,” Ph.D. thesis, Grenoble Alpes University, Grenoble, France.
44.
Vaschy
,
A.
,
1892
, “
Sur Les Lois de Similitude en Physique
,”
Ann. Télégraph.
,
19
, pp.
25
28
.
45.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems, Illustration of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.10.1103/PhysRev.4.345
46.
Weller
,
H.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.10.1063/1.168744
47.
Huang
,
H.
,
Wu
,
H.
, and
Zhang
,
C.
,
2018
, “
An Experimental Study on Flow Friction and Heat Transfer of Water in Sinusoidal Wavy Silicon Microchannels
,”
J. Micromech. Microeng.
,
28
(
5
), p.
055003
.10.1088/1361-6439/aaad46
48.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfood
,
E.
,
2002
,
Transport Phenomena
, 2nd ed.,
Wiley and Sons
, Hoboken, NJ.
49.
Mulholland
,
J.
,
Srivastava
,
R.
, and
Wendt
,
J.
,
1988
, “
Influence of Droplet Spacing on Drag Coefficient in Nonevaporating, Monodisperse Streams
,”
AIAA J.
,
26
(
10
), pp.
1231
1237
.10.2514/3.10033
50.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W.
,
1993
, “
Three-Dimensional Flow Over Two Spheres Placed Side by Side
,”
J. Fluid. Mech.
,
246
, pp.
465
488
.10.1017/S0022112093000229
51.
Thrift
,
A.
,
Brumbaugh
,
S.
,
Thole
,
K.
, and
Kohli
,
A.
,
2010
, “
A Methodology to Measure Aerodynamic Forces on Cylinders in Channel Flow
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
08140
.10.1115/1.4002198
52.
Sochinskii
,
A.
,
Colombet
,
D.
,
Medrano Muñoz
,
M.
,
Ayela
,
F.
, and
Luchier
,
N.
,
2019
, “
Flow and Heat Transfer Around a Diamond-Shaped Cylinder at Moderate Reynolds Number
,”
Int. J. Heat Mass Transfer
,
142
, p.
118435
.10.1016/j.ijheatmasstransfer.2019.118435
53.
Wen
,
L.
, and
Yu
,
Y.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Engng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
54.
Larson
,
R.
, and
Higdon
,
J.
,
1989
, “
A Periodic Grain Consolidation Model of Porous Media
,”
Phys. Fluids A
,
1
(
1
), pp.
38
46
.10.1063/1.857545
55.
Van der Hoef
,
A.
,
Beetstra
,
R.
, and
Kuipers
,
J.
,
2005
, “
Lattice-Boltzmann Simulations of Low-Reynolds-Number Flow Past Mono- and Bidisperse Arrays of Spheres: Results for the Permeability and Drag Force
,”
J. Fluid Mech.
,
528
, pp.
233
254
.10.1017/S0022112004003295
56.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Through a Periodic Array of Spheres
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
343
360
.10.1016/0301-9322(82)90047-7
57.
Stokes
,
G.
,
1851
, “
For Creeping Flow Around an Object of Arbitrary Shape
,”
Trans. Cambridge Philos. Soc.
,
9
(
part 2
), p.
8
.
You do not currently have access to this content.