Abstract

Turbulent particle-laden flows are of interest due to their presence in many industrial and natural flows. The effect that the particles have on the turbulence of the fluid is referred to as turbulence modulation. Experimental data is lacking at Reynolds numbers (Re) greater than 100,000, and at dense loadings (ΦV > 1%). In this work, turbulent particle-laden flow over a deep cavity with an aspect ratio of 1, was studied at Re of 11,500 and 115,000, and particle loadings of 0%, 1%, 3%, and 5% by weight/volume using neutrally buoyant particles (solid-phase specific gravity = 1). Super absorbent particles were used to create an index-matched environment with water as the working fluid. Data were acquired using two-dimensional planar particle image velocimetry along the center span of the geometry. Mean and root-mean-square velocities were calculated for the fluid phase. The flow structures were identified and located using the gamma criteria. The results showed that the particle loading changed the locations of the recirculation regions within the cavity. The mean velocities were nominally unaffected by loading for a respective Re case. Prior literature suggested that the particles would attenuate the turbulence, however, the current data showed no single trend. Turbulence modulation of the flow was found to be sensitive to the Re and location within the flow field. The changes in the turbulence appeared to be primarily due to the differences in the location of the flow structures.

References

1.
Saber
,
A.
,
Lundström
,
T. S.
, and
Hellström
,
J. G. I.
,
2015
, “
Turbulent Modulation in Particulate Flow: A Review of Critical Variables
,”
Engine
,
7
(
10
), pp.
597
609
.10.4236/eng.2015.710054
2.
Shokri
,
R.
,
Ghaemi
,
S.
,
Nobes
,
D. S.
, and
Sanders
,
R. S.
,
2017
, “
Investigation of Particle-Laden Turbulent Pipe Flow at High-Reynolds-Number Using Particle Image/Tracking Velocimetry (PIV/PTV)
,”
Int. J. Multiphase Flow
,
89
, pp.
136
149
.10.1016/j.ijmultiphaseflow.2016.06.023
3.
Hetsroni
,
G.
,
1989
, “
Particles-Turbulence Interaction
,”
Int. J. Multiphase Flow
,
15
(
5
), pp.
735
746
.10.1016/0301-9322(89)90037-2
4.
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2004
, “
Turbulence Modification in Gas-Liquid and Solid-Liquid Dispersed Two-Phase Pipe Flows
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
489
498
.10.1016/j.ijheatfluidflow.2004.02.001
5.
Wiederseiner
,
S.
,
Andreini
,
N.
,
Epely-Chauvin
,
G.
, and
Ancey
,
C.
,
2011
, “
Refractive-Index and Density Matching in Concentrated Particle Suspensions: A Review
,”
Exp. Fluids
,
50
(
5
), pp.
1183
1206
.10.1007/s00348-010-0996-8
6.
Hassan
,
Y. A.
, and
Dominguez-Ontiveros
,
E. E.
,
2008
, “
Flow Visualization in a Pebble Bed Reactor Experiment Using PIV and Refractive Index Matching Techniques
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3080
3085
.10.1016/j.nucengdes.2008.01.027
7.
Najjari
,
M. R.
,
Hinke
,
J. A.
,
Bulusu
,
K. V.
, and
Plesniak
,
M. W.
,
2016
, “
On the Rheology of Refractive-Index-Matched, Non-Newtonian Blood-Analog Fluids for PIV Experiments
,”
Exp. Fluids
,
57
(
6
), p.
96
.10.1007/s00348-016-2185-x
8.
Blois
,
G.
,
Bristow
,
N. R.
,
Kim
,
T.
,
Best
,
J. L.
, and
Christensen
,
K. T.
,
2020
, “
Novel Environment Enables PIV Measurements of Turbulent Flow Around and Within Complex Topographies
,”
J. Hydraul. Eng.
,
146
(
5
), p.
04020033
.10.1061/(ASCE)HY.1943-7900.0001733
9.
Byron
,
M. L.
, and
Variano
,
E. A.
,
2013
, “
Refractive-Index-Matched Hydrogel Materials for Measuring Flow-Structure Interactions
,”
Exp. Fluids
,
54
(
2
), pp.
1
6
.10.1007/s00348-013-1456-z
10.
Zhang
,
K.
, and
Rival
,
D. E.
,
2018
, “
Experimental Study of Turbulence Decay in Dense Suspensions Using Index-Matched Hydrogel Particles
,”
Phys. Fluids
,
30
(
7
), p.
073301
.10.1063/1.5031767
11.
Murray
,
N.
,
Sällström
,
E.
, and
Ukeiley
,
L.
,
2009
, “
Properties of Subsonic Open Cavity Flow Fields
,”
Phys. Fluids
,
21
(
9
), p.
095103
.10.1063/1.3210772
12.
Omari
,
R.
,
2013
, “
CFD Simulations of Lid Driven Cavity Flow at Moderate Reynolds Number
,”
Eur. Sci. J.
,
9
(
15
), pp.
22
35
.
13.
Faure
,
T. M.
,
Adrianos
,
P.
,
Lusseyran
,
F.
, and
Pastur
,
L.
,
2007
, “
Visualizations of the Flow Inside an Open Cavity at Medium Range Reynolds Numbers
,”
Exp. Fluids
,
42
(
2
), pp.
169
184
.10.1007/s00348-006-0188-8
14.
Liu
,
X.
, and
Katz
,
J.
,
2018
, “
Pressure–Rate-of-Strain, Pressure Diffusion, and Velocity–Pressure-Gradient Tensor Measurements in a Cavity Flow
,”
AIAA J.
,
56
(
10
), pp.
3897
3914
.10.2514/1.J056168
15.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
93
136
.10.1146/annurev.fluid.32.1.93
16.
Koseff
,
J. R.
, and
Street
,
R. L.
,
1984
, “
Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
21
27
.10.1115/1.3242393
17.
Cheng
,
M.
, and
Hung
,
K. C.
,
2006
, “
Vortex Structure of Steady Flow in a Rectangular Cavity
,”
Comput. Fluids
,
35
(
10
), pp.
1046
1062
.10.1016/j.compfluid.2005.08.006
18.
Rowley
,
C. W.
, and
Williams
,
D. R.
,
2006
, “
Dynamics and Control of High-Reynolds-Number Flow Over Open Cavities
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
251
276
.10.1146/annurev.fluid.38.050304.092057
19.
Ukeiley
,
L.
, and
Murray
,
N.
,
2005
, “
Velocity and Surface Pressure Measurements in an Open Cavity
,”
Exp. Fluids
,
38
(
5
), pp.
656
671
.10.1007/s00348-005-0948-x
20.
Larchevêque
,
L.
,
Sagaut
,
P.
,
Mary
,
I.
,
Labbé
,
O.
, and
Comte
,
P.
,
2003
, “
Large-Eddy Simulation of a Compressible Flow Past a Deep Cavity
,”
Phys. Fluids
,
15
(
1
), pp.
193
210
.10.1063/1.1522379
21.
Ghia
,
U. K. N. G.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
22.
Kalilainen
,
J.
,
Rantanen
,
P.
,
Lind
,
T.
,
Auvinen
,
A.
, and
Dehbi
,
A.
,
2016
, “
Experimental Investigation of a Turbulent Particle-Laden Flow Inside a Cubical Differentially Heated Cavity
,”
J. Aerosol Sci.
,
100
, pp.
73
87
.10.1016/j.jaerosci.2016.06.001
23.
Dehbi
,
A.
,
Kalilainen
,
J.
,
Lind
,
T.
, and
Auvinen
,
A.
,
2017
, “
A Large Eddy Simulation of Turbulent Particle-Laden Flow Inside a Cubical Differentially Heated Cavity
,”
J. Aerosol Sci.
,
103
, pp.
67
82
.10.1016/j.jaerosci.2016.10.003
24.
Xu
,
B.
, and
Gilchrist
,
J. F.
,
2010
, “
Shear Migration and Chaotic Mixing of Particle Suspensions in a Time-Periodic Lid-Driven Cavity
,”
Phys. Fluids
,
22
(
5
), p.
053301
.10.1063/1.3394981
25.
Romano
,
F.
, and
Kuhlmann
,
H. C.
,
2017
, “
Particle–Boundary Interaction in a Shear-Driven Cavity Flow
,”
Theor. Comput. Fluid Dyn.
,
31
(
4
), pp.
427
445
.10.1007/s00162-017-0430-4
26.
Lien
,
K.
,
Monty
,
J. P.
,
Chong
,
M. S.
, and
Ooi
,
A.
,
2004
, “
The Entrance Length for Fully Developed Turbulent Channel Flow
,”
15th Australian Fluid Mechanics Conference
, Sydney, Australia, Dec. 13–17, pp.
356
363
.
27.
Bluestein
,
A. M.
,
Venters
,
R.
,
Bohl
,
D.
,
Helenbrook
,
B. T.
, and
Ahmadi
,
G.
,
2019
, “
Turbulent Flow Through a Ducted Elbow and Plugged Tee Geometry: An Experimental and Numerical Study
,”
ASME J. Fluids Eng.
,
141
(
8
), p. 081101.10.1115/1.4042256
28.
Bluestein
,
A. M.
, and
Bohl
,
D.
,
2020
, “
Development and Validation of a PIV Processing Routine for Two-Phase Index-Matched Flow
,”
J. Visual.
,
23
(
6
), pp.
951
970
.10.1007/s12650-020-00680-9
29.
Elgobashi
,
S.
,
2006
, “
An Updated Classification Map of Particle-Laden Turbulent Flows
,”
IUTAM Symposium on Computational Approaches to Multiphase Flow
, Dordrecht, The Netherlands, pp.
3
10
.
30.
Ruiz-Angulo
,
A.
, and
Hunt
,
M. L.
,
2010
, “
Measurements of the Coefficient of Restitution for Particle Collisions With Ductile Surfaces in a Liquid
,”
Gran. Matter
,
12
(
2
), pp.
185
191
.10.1007/s10035-010-0166-y
31.
LaVision, DaVis FlowMaster
,
2017
,
Hardware Manual for DaVis 8.4
,
Instruction Manual
,
Göttingen, Germany
.
32.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification
,”
Comp. Assess. Methods. Meas. Sci. Technol.
,
26
(
7
), p.
074004
.10.1088/0957-0233/26/7/074004
33.
Hutchinson
,
P. G. F. A. E.
,
Hewitt
,
G. F.
, and
Dukler
,
A. E.
,
1971
, “
Deposition of Liquid or Solid Dispersions From Turbulent Gas Streams: A Stochastic Model
,”
Chem. Eng. Sci.
,
26
(
3
), pp.
419
439
.10.1016/0009-2509(71)83016-6
34.
Kolmogorov
,
A. N.
,
1991
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. R. Soc. London. Ser. A
,
434
(
1890
), pp.
9
13
.10.1098/rspa.1991.0075
35.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
36.
Prasad
,
A. K.
, and
Koseff
,
J. R.
,
1989
, “
Reynolds Number and End‐Wall Effects on a Lid‐Driven Cavity Flow
,”
Phys. Fluids A: Fluid Dyn.
,
1
(
2
), pp.
208
218
.10.1063/1.857491
37.
Samantaray
,
D.
, and
Das
,
M. K.
,
2019
, “
Nature of Turbulence Inside a Cubical Lid-Driven Cavity: Effect of Reynolds Number
,”
Int. J. Heat Fluid Flow
,
80
, p.
108498
.10.1016/j.ijheatfluidflow.2019.108498
You do not currently have access to this content.