Abstract

The ground effect aerodynamics and flow physics of a 2D dragonfly wing hovering (the Reynolds number is 157) in an inclined stroke plane are investigated via solving 2D unsteady incompressible laminar flow Navier–Stokes equations. An analysis road map is proposed to explain the influence of the ground on the flow field, pressure distribution on the wing surface, and the aerodynamic force. In the analysis road map, the flow relative to the wing surface induced by the wing motion and vortex is classified into vertical and parallel wing surface flows. The vertical flow impinges on the wing surface to form a positive pressure zone. In contrast, the parallel flow generates the boundary layer and further concentrated vortex and secondary vortex, which induce negative pressure on the wing surface. The ground impacts the flow relative to the wing in three ways: changing the trajectory of the shed vortex by the mirror effect, promoting the deformation and fusion of the vortices, and causing the cushion effect at extremely small ground clearance.

References

1.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis
,”
Philos. Trans. R. Soc. Lond. B
,
305
(
1122
), pp.
145
181
.10.1098/rstb.1984.0049
2.
Weis-Fogh
,
T.
,
1973
, “
Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production
,”
J. Exp. Biol.
,
59
(
1
), pp.
169
230
.10.1242/jeb.59.1.169
3.
Ellington
,
C. P.
,
Berg
,
C. V. D.
,
Willmott
,
A. P.
, and
Thomas
,
A. L. R.
,
1996
, “
Leading-Edge Vortices in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
4.
Dickinson
,
M. H.
,
Lehmann
,
F.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.10.1126/science.284.5422.1954
5.
Sun
,
M.
, and
Tang
,
J.
,
2002
, “
Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion
,”
J. Exp. Biol.
,
205
(
1
), pp.
55
70
.10.1242/jeb.205.1.55
6.
Dickinson
,
M. H.
,
1999
, “
Haltere-Mediated Equilibrium Reflexes of the Fruit Fly, Drosophila Melanogaster
,”
Phil. Trans. R. Soc. Lond. B
,
354
(
1385
), pp.
903
916
.10.1098/rstb.1999.0442
7.
Usherwood
,
J. R.
, and
Ellington
,
C. P.
,
2002
, “
The Aerodynamics of Revolving Wings I. Model Hawkmoth Wings
,”
J. Exp. Biol.
,
205
(
11
), pp.
1547
1564
.10.1242/jeb.205.11.1547
8.
Usherwood
,
J. R.
, and
Ellington
,
C. P.
,
2002
, “
The Aerodynamics of Revolving Wings II. Propeller Force Coefficients From Mayfly to Quail
,”
J. Exp. Biol.
,
205
(
11
), pp.
1565
1576
.10.1242/jeb.205.11.1565
9.
Wang
,
Z. J.
,
2000
, “
Two Dimensional Mechanism for Insect Hovering
,”
Phys. Rev. Lett.
,
85
(
10
), pp.
2216
2219
.10.1103/PhysRevLett.85.2216
10.
Berg
,
C. V. D.
, and
Ellington
,
C. P.
,
1997
, “
The Three–Dimensional Leading-Edge Vortex of a ‘Hovering’ Model Hawkmoth
,”
Phil. Trans. R. Soc. Lond. B
,
352
(
1351
), pp.
329
340
.10.1098/rstb.1997.0024
11.
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2001
, “
Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings
,”
Nature
,
412
(
6848
), pp.
729
733
.10.1038/35089071
12.
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2003
, “
The Influence of Wing-Wake Interactions on the Production of Aerodynamic Forces in Flapping Flight
,”
J. Exp. Biol.
,
206
(
13
), pp.
2257
2272
.10.1242/jeb.00381
13.
Wu
,
J.
, and
Sun
,
M.
,
2005
, “
The Influence of the Wake of a Flapping Wing on the Production of Aerodynamic Forces
,”
Acta Mech. Sin.
,
21
(
5
), pp.
411
418
.10.1007/s10409-005-0064-4
14.
Lu
,
H.
,
Lua
,
K. B.
,
Lee
,
Y. J.
,
Lim
,
T. T.
, and
Yeo
,
K. S.
,
2016
, “
Ground Effect on the Aerodynamics of Three-Dimensional Hovering Wings
,”
Bioinspir. Biomim.
,
11
(
6
), p.
066003
.10.1088/1748-3190/11/5/066003
15.
Qu
,
Q.
,
Wang
,
W.
,
Liu
,
P.
, and
Agarwal
,
R. K.
,
2015
, “
Airfoil Aerodynamics in Ground Effect for Wide Range of Angles of Attack
,”
AIAA J.
,
53
(
4
), pp.
1048
1061
.10.2514/1.J053366
16.
Qu
,
Q.
,
Jia
,
X.
,
Wang
,
W.
,
Liu
,
P.
, and
Agarwal
,
R. K.
,
2014
, “
Numerical Study of the Aerodynamics of a NACA 4412 Airfoil in Dynamic Ground Effect
,”
Aerosp. Sci. Technol.
,
38
, pp.
56
63
.10.1016/j.ast.2014.07.016
17.
Qu
,
Q.
,
Lu
,
Z.
,
Liu
,
P.
, and
Agarwal
,
R. K.
,
2014
, “
Numerical Study of Aerodynamics of a Wing-in-Ground-Effect Craft
,”
J. Aircr.
,
51
(
3
), pp.
913
924
.10.2514/1.C032531
18.
Qin
,
Y.
,
Qu
,
Q.
,
Liu
,
P.
,
Tian
,
Y.
, and
Lu
,
Z.
,
2015
, “
DDES Study of the Aerodynamic Forces and Flow Physics of a Delta Wing in Static Ground Effect
,”
Aerosp. Sci. Technol.
,
43
, pp.
423
436
.10.1016/j.ast.2015.04.004
19.
Moryossef
,
Y.
, and
Levy
,
Y.
,
2004
, “
Effect of Oscillations on Airfoils in Close Proximity to the Ground
,”
AIAA J.
,
42
(
9
), pp.
1755
1764
.10.2514/1.6380
20.
Molina
,
J.
, and
Zhang
,
X.
,
2011
, “
Aerodynamics of a Heaving Airfoil in Ground Effect
,”
AIAA J.
,
49
(
6
), pp.
1168
1179
.10.2514/1.J050369
21.
Shyy
,
W.
,
Aono
,
H.
,
Chimakurthi
,
S. K.
,
Trizila
,
P.
,
Kang
,
C. K.
,
Cesnik
,
C. E. S.
, and
Liu
,
H.
,
2010
, “
Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity
,”
Prog. Aeosp. Sci.
,
46
(
7
), pp.
284
327
.10.1016/j.paerosci.2010.01.001
22.
Lua
,
K. B.
,
Lim
,
T. T.
, and
Yeo
,
K. S.
,
2008
, “
Aerodynamic Forces and Flow Fields of a Two-Dimensional Hovering Wing
,”
Exp. Fluids
,
45
(
6
), pp.
1047
1065
.10.1007/s00348-008-0527-z
23.
Lua
,
K. B.
,
Lim
,
T. T.
, and
Yeo
,
K. S.
,
2011
, “
Effect of Wing–Wake Interaction on Aerodynamic Force Generation on a 2D Flapping Wing
,”
Exp. Fluids
,
51
(
1
), pp.
177
195
.10.1007/s00348-010-1032-8
24.
Truong
,
T. V.
,
Kim
,
J.
,
Kim
,
M. J.
,
Park
,
H. C.
,
Yoon
,
K. J.
, and
Byun
,
D.
,
2013
, “
Flow Structures Around a Flapping Wing Considering Ground Effect
,”
Exp. Fluids
,
54
, p.
1575
.10.1007/s00348-013-1575-6
25.
Truong
,
T. V.
,
Byun
,
D.
,
Kim
,
M. J.
,
Yoon
,
K. J.
, and
Park
,
H. C.
,
2013
, “
Aerodynamic Forces and Flow Structures of the Leading Edge Vortex on a Flapping Wing Considering Ground Effect
,”
Bioinspir. Biomim.
,
8
(
3
), p.
036007
.10.1088/1748-3182/8/3/036007
26.
Kolomenskiy
,
D.
,
Maeda
,
M.
,
Engels
,
T.
,
Liu
,
H.
,
Schneider
,
K.
, and
Nave
,
J.-C.
,
2016
, “
Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff
,”
PLoS One
,
11
(
3
), p.
e0152072
.10.1371/journal.pone.0152072
27.
Chen
,
M.
,
Zhang
,
Y.
, and
Sun
,
M.
,
2013
, “
Wing and Body Motion and Aerodynamic and Leg Forces During Take-Off in Droneflies
,”
J. R. Soc. Interface
,
10
(
89
), p.
20130808
.10.1098/rsif.2013.0808
28.
Gao
,
T.
, and
Lu
,
X.
,
2008
, “
Insect Normal Hovering Flight in Ground Effect
,”
Phys. Fluids
,
20
(
8
), p.
087101
.10.1063/1.2958318
29.
Lu
,
H.
,
Lua
,
K. B.
,
Lim
,
T. T.
, and
Yeo
,
K. S.
,
2014
, “
Ground Effect on the Aerodynamics of a Two-Dimensional Oscillating Airfoil
,”
Exp. Fluids
,
55
, p.
1787
.10.1007/s00348-014-1787-4
30.
Qu
,
Q.
,
Zheng
,
Y.
,
Liu
,
P.
,
Qin
,
Y.
, and
Agarwal
,
R. K.
,
2017
, “
Ground Effect Aerodynamics of a Flapping Airfoil in Hover
,”
AIAA Paper No. 2017-3408
.
31.
Zheng
,
Y.
,
Qu
,
Q.
,
Liu
,
P.
,
Qin
,
Y.
, and
Agarwal
,
R. K.
,
2019
, “
Aerodynamics of a Two-Dimensional Flapping Wing Hovering in Proximity of Ground
,”
Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
,
233
(
12
), pp.
4316
4332
.10.1177/0954410018819335
32.
Wu
,
J.
,
Liu
,
C.
,
Yang
,
S.
, and
Zhao
,
N.
,
2015
, “
Influence of a Flexible Tail on the Performance of a Foil Hovering Near the Ground: Numerical Investigation
,”
Eur. J. Mech. B-Fluids
,
52
, pp.
85
96
.10.1016/j.euromechflu.2015.02.004
33.
Maeda
,
M.
, and
Liu
,
H.
,
2013
, “
Ground Effect in Fruit Fly Hovering: A Three-Dimensional Computational Study
,”
J. Biomech. Sci. Eng.
,
8
(
4
), pp.
344
355
.10.1299/jbse.8.344
34.
Srinidhi
,
N. G.
, and
Vengadesan
,
S.
,
2017
, “
Ground Effect on Tandem Flapping Wings Hovering
,”
Comput. Fluids
,
152
, pp.
40
56
.10.1016/j.compfluid.2017.04.006
35.
Deepthi
,
S.
, and
Vengadesan
,
S.
,
2021
, “
Can the Ground Enhance Vertical Force for Inclined Stroke Plane Flapping Wing?
,”
Bioinspir. Biomim.
,
16
(
4
), p.
046010
.10.1088/1748-3190/abce4c
36.
Srygley
,
R. B.
, and
Thomas
,
A. L. R.
,
2002
, “
Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies
,”
Nature
,
420
(
6916
), pp.
660
664
.10.1038/nature01223
37.
Sun
,
M.
, and
Lan
,
S.
,
2004
, “
A Computational Study of the Aerodynamic Forces and Power Requirements of Dragonfly (Aeschna Juncea) Hovering
,”
J. Exp. Biol.
,
207
(
11
), pp.
1887
1901
.10.1242/jeb.00969
38.
Wang
,
Z. J.
,
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2004
, “
Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations versus Robotic Wing Experiments
,”
J. Exp. Biol.
,
207
(
3
), pp.
449
460
.10.1242/jeb.00739
39.
Wakeling
,
J. M.
, and
Ellington
,
C. P.
,
1997
, “
Dragonfly Flight. II. Velocities, Accelerations and Kinematics of Flapping Flight
,”
J. Exp. Biol.
,
200
(
3
), pp.
557
582
.10.1242/jeb.200.3.557
40.
Norberg
,
R. A.
,
1975
, “
Hovering Flight of the Dragonfly Aeschna Juncea L., Kinematics and Aerodynamics
,”
Swimming and Flying in Nature
,
T. Y.
Wu
,
C. J.
Brokaw
, and
C.
Brennen
, eds.,
Springer
,
Boston, MA
, pp.
763
781
.
41.
Bos
,
F. M.
,
Lentink
,
D.
,
Van Oudheusden
,
B. W.
, and
Bijl
,
H.
,
2008
, “
Influence of Wing Kinematics on Aerodynamic Performance in Hovering Insect Flight
,”
J. Fluid Mech.
,
594
, pp.
341
368
.10.1017/S0022112007009172
42.
Xu
,
S.
, and
Wang
,
Z. J.
,
2006
, “
An Immersed Interface Method for Simulating the Interaction of a Fluid With Moving Boundaries
,”
J. Comput. Phys.
,
216
(
2
), pp.
454
493
.10.1016/j.jcp.2005.12.016
43.
Lee
,
Y. J.
,
Lua
,
K. B.
,
Lu
,
H.
,
Aisyah
,
S. N.
, and
Lim
,
T. T.
,
2016
, “
Aerodynamics of 2D and 3D Flapping Wings in Water Treading Motion
,”
20th Australasian Fluid Mechanics Conference
, Perth, Australia, Dec. 5–8, Paper No. 444.https://people.eng.unimelb.edu.au/imarusic/proceedings/20/444%20Paper.pdf
You do not currently have access to this content.