Abstract

Most theoretical models related to thermal performance and the evaluation of pressure drop on compact heat exchangers, consider that the mass flow rate is constant and equal in all core channels. However, this hypothesis in some situations is erroneous, the effect of fluid maldistribution affects heat exchangers performance. Therefore, in the present work, an analysis of the phenomenon of fluid maldistribution in headers was performed. Experimental tests were carried out on polymeric headers, using Polyamide 2200, in order to evaluate the fluid nonuniformity. The tests were carried out with compressed air at room temperature in a wide range of mass flow rate totaling 300 experimental data. A theoretical model was used to predict the fluid maldistribution level inside the header. Based on the coefficient of variation (CoV), the presence of fluid maldistribution for low flows was verified. Besides, a new theoretical model, the standard deviation of fluid nonuniformity (σ), based on the shape factor (SF), was presented to measure maldistribution level without experimental tests. The proposed model proved to be efficient to predict the fluid nonuniformity inside the header, presenting an average error of 18% in comparison to the CoV.

References

1.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
2.
Reay
,
D. A.
,
1994
, “
Compact Heat Exchangers: A Review of Current Equipment and R&D in the Field
,”
Heat Recovery Syst. CHP
,
14
(
5
), pp.
459
74
.10.1016/0890-4332(94)90050-7
3.
Zhao
,
Z.
,
Zhao
,
K.
,
Jia
,
D.
,
Jiang
,
P.
, and
Shen
,
R.
,
2017
, “
Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger
,”
Energies
,
10
(
11
), p.
1828
.10.3390/en10111828
4.
Pra
,
F.
,
Tochon
,
P.
,
Mauget
,
C.
,
Fokkens
,
J.
, and
Willemsen
,
S.
,
2008
, “
Promising Designs of Compact Heat Exchangers for Modular HTRs Using the Brayton Cycle
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3160
3173
.10.1016/j.nucengdes.2007.12.024
5.
Gschwind
,
P.
,
Regele
,
A.
, and
Kottke
,
V.
,
1995
, “
Sinusoidal Wavy Channels With Taylor-Goertler Vortices
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
270
275
.10.1016/0894-1777(95)00056-R
6.
Tsuzuki
,
N.
,
Kato
,
Y.
, and
Ishiduka
,
T.
,
2007
, “
High Performance Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1702
1707
.10.1016/j.applthermaleng.2006.07.007
7.
Sabharwall
,
P.
, and
Gunnerson
,
F.
,
2009
, “
Engineering Design Elements of a Two-Phase Thermosyphon for the Purpose of Transferring NGNP Thermal Energy to a Hydrogen Plant
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2293
2301
.10.1016/j.nucengdes.2009.06.022
8.
Mortean
,
M. V. V.
,
Cisterna
,
L. H. R.
,
Paiva
,
K. V.
, and
Mantelli
,
M. B. H.
,
2019
, “
Thermal and Hydrodynamic Analysis of a Cross-Flow Compact Heat Exchanger
,”
Appl. Therm. Eng.
,
150
(
March
), pp.
750
761
.10.1016/j.applthermaleng.2019.01.038
9.
Sarmiento
,
A. P. C.
,
Soares
,
V. H. T.
,
Carqueja
,
G. G.
,
Batista
,
J. V. C.
,
Milanese
,
F. H.
, and
Mantelli
,
M. B. H.
,
2020
, “
Thermal Performance of Diffusion-Bonded Compact Heat Exchangers
,”
Int. J. Therm. Sci.
,
153
, p.
106384
.10.1016/j.ijthermalsci.2020.106384
10.
Hesselgreaves
,
J. E.
,
2017
,
Compact Heat Exchangers: Selection, Design, and Operation
, 2nd ed.,
Elsevier/BH
,
Amsterdam, The Netherlands
.
11.
da Silva
,
R. P. P.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
,
Beckedorff
,
L. E.
,
Oliveira
,
J. L. G.
,
Brandão
,
F. G.
,
Monteiro
,
A. S.
,
Carvalho
,
C. S.
,
Oliveira
,
H. R.
,
Borges
,
D. G.
, and
Chastinet
,
V. L.
,
2021
, “
Thermal and Hydrodynamic Analysis of a Compact Heat Exchanger Produced by Additive Manufacturing
,”
Appl. Therm. Eng.
,
193
(
July
), p.
116973
.10.1016/j.applthermaleng.2021.116973
12.
Lance
,
B. W.
, and
Carlson
,
M. D.
,
2017
, “
Printed Circuit Heat Exchanger Flow Distribution Measurements
,”
ASME
Paper No. GT2017-64560.10.1115/GT2017-64560
13.
Chu
,
W-x.
,
Bennett
,
K.
,
Cheng
,
J.
,
Chen
,
Y-T.
, and
Wang
,
Q-w.
,
2019
, “
Numerical Study on a Novel Hyperbolic Inlet Header in Straight-Channel Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
146
(
January
), pp.
805
814
.10.1016/j.applthermaleng.2018.10.027
14.
Shin
,
C. W.
, and
No
,
H. C.
,
2017
, “
Experimental Study for Pressure Drop and Flow Instability of Two-Phase Flow in the PCHE-Type Steam Generator for SMRs
,”
Nucl. Eng. Des.
,
318
(
July
), pp.
109
118
.10.1016/j.nucengdes.2017.04.004
15.
Rao
,
B. P.
, and
Das
,
S. K.
,
2004
, “
An Experimental Study on the Influence of Flow Maldistribution on the Pressure Drop Across a Plate Heat Exchanger
,”
J. Fluids Eng.
,
126
(
4
), pp.
680
691
.10.1115/1.1779664
16.
Chiou
,
J. P.
,
1978
, “
Thermal Performance Deterioration in Crossflow Heat Exchanger Due to the Flow Nonuniformity
,”
ASME J. Heat Transfer-Trans. AMSE
,
100
(
4
), pp.
580
587
.10.1115/1.3450860
17.
Sylvain
,
L.
,
Florent
,
P.
,
Lang
,
S. K.
, and
Bergles
,
A. E.
,
1999
, Flow Maldistribution Heat Exchangers,
Appl. Thermal Eng.
,
19
(
8
), pp.
847
863
.10.1016/S1359-4311(98)00090-8
18.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
, “
Compact Heat Exchangers
,” Repr. ed. 1998 With Corrections,
Krieger Pub. Co
,
Malabar, FL
.
19.
Mondt
,
J. R.
,
1977
, “
Effects of Nonuniform Passages on Deepfold Heat Exchanger Performance
,”
J. Eng. Power
,
99
(
4
), pp.
657
663
.10.1115/1.3446564
20.
Gotovsky
,
M. A.
,
Fedorovich
,
E. D.
,
Firsova
,
E. V.
,
Blagoveshchensky
,
A. J.
,
Mizonov
,
N. V.
,
Piskunov
,
V. N.
, and
Vinokurov
,
V. F.
,
1985
, “
Thermal Effectiveness of Heat Exchangers: Effect of Manufacturing Inaccuracies and Deformation of Tube Bundles
,”
Heat Transfer Eng.
,
6
(
1
), pp.
52
57
.10.1080/01457638508939619
21.
Denkenberger
,
D. C.
,
Brandemuehl
,
M. J.
,
Zhai
,
J.
, and
Pearce
,
J. M.
,
2021
, “
Finite Difference Heat Exchanger Model: Flow Maldistribution With Thermal Coupling
,”
Heat Transfer Eng.
,
42
(
11
), pp.
889
903
.10.1080/01457632.2020.1756060
22.
Ponyavin
,
V.
,
Chen
,
Y.
,
Cutts
,
J.
,
Wilson
,
M.
, and
Hechanova
,
A. E.
,
2008
, “
Calculation of Fluid Flow Distribution Inside a Compact Ceramic High Temperature Heat Exchanger and Chemical Decomposer
,”
J. Fluids Eng.
,
130
(
6
), p.
061104
.10.1115/1.2911680
23.
Ranganayakulu
,
C.
,
Seetharamu
,
K. N.
, and
Sreevatsan
,
K. V.
,
1996
, “
The Effects of Inlet Fluid Flow Nonuniformity on Thermal Performance and Pressure Drops in Crossflow Plate-Fin Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
40
(
1
), pp.
27
38
.10.1016/S0017-9310(96)00087-7
24.
Zhang
,
Z.
, and
Li
,
Y.
,
2003
, “
CFD Simulation on Inlet Configuration of Plate-Fin Heat Exchangers
,”
Cryogenics
,
43
(
12
), pp.
673
678
.10.1016/S0011-2275(03)00179-6
25.
Baek
,
S.
,
Lee
,
C.
, and
Jeong
,
S.
,
2014
, “
Effect of Flow Maldistribution and Axial Conduction on Compact Microchannel Heat Exchanger
,”
Cryogenics
,
60
(
March
), pp.
49
61
.10.1016/j.cryogenics.2014.01.003
26.
Strobel
,
M.
,
2019
,
Análise da Perda de Carga e Má Distribuição em Trocador de Calor Compacto Fabricado por Impressão 3D
,
Centro Tecnológico de Joinville - CTJ, Universidade Federal de Santa Catarina
,
Joinville, Brazil
.
27.
Ma
,
T.
,
Zhang
,
P.
,
Shi
,
H.
,
Chen
,
Y.
, and
Wang
,
Q.
,
2020
, “
Prediction of Flow Maldistribution in Printed Circuit Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
152
(
May
), p.
119560
.10.1016/j.ijheatmasstransfer.2020.119560
28.
Çengel, Yunus
,
A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
, 4th ed.,
McGraw-Hill
,
New York
.
29.
Incropera
,
F. P.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2008
,
Fundamentos de Transferência de Calor e de Massa
,
LTC
,
Rio de Janeiro
.
30.
Abishek
,
S.
,
Srinivasa Ramanujam
,
K.
, and
Katte
,
S. S.
,
2007
, “
View Factors Between Disc/Rectangle and Rectangle in Parallel and Perpendicular Planes
,”
J. Thermophys. Heat Transfer
,
21
(
1
), pp.
236
239
.10.2514/1.26851
31.
Strobel
,
M.
, and
Mortean
,
M. V. V.
,
2022
, “
Pressure Drop and Fluid Maldistribution Analysis of a Compact Heat Exchanger Manufactured by 3D Printing
,”
Int. J. Therm. Sci.
,
172
(
February
), p.
107331
.10.1016/j.ijthermalsci.2021.107331
32.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
,
8
th ed.
McGraw-Hill Series in Mechanical Engineering, McGraw-Hill/Connect Learn Succeed
,
Boston, MA
.
33.
de Sousa
,
A. R.
, and
Armando Albertazzi
, and
G.
Jr.
,
2017
, “
Fundamentos de Metrologia Científica e Industrial
,” Manole, Vol.
2
, Florianopolis, Brazil.
34.
Peng
,
X.
,
Li
,
D.
,
Li
,
J.
,
Jiang
,
S.
, and
Gao
,
Q.
,
2020
, “
Improvement of Flow Distribution by New Inlet Header Configuration With Splitter Plates for Plate-Fin Heat Exchanger
,”
Energies
,
13
(
6
), p.
1323
.10.3390/en13061323
You do not currently have access to this content.