Abstract

The coupling of parallel flow, in a three-layer channel, with the main fluid flow sandwiched between two Darcy–Forchheimer–Brinkman (DFB) permeable layers of varying porousness is investigated in this work. A single binary model is proposed to characterize the flow through the channel. Within the transition porous layers, the reciprocal of the permeability is represented by a polynomial of degree n. Due to the lack of an analytical framework in this regard, cutting-edge computational tools are used to provide a novel insight into fluid dynamics in heterogeneous porous media (HPM). In this context, a solver capable of simulating heterogeneous porous media is created by modifying an open source software package openfoam's steady-state finite volume solver. The solver has first been checked and approved for the case of homogeneous porous media using the homotopy analysis method (HAM) and numerical data from previous literature. Then, a parametric study is conducted to identify the effect of a specific set of medium variables on flow characteristics and transport efficiency. The variables that can be changed include the Darcy number, permeability degree, free-space layer thickness, Reynolds number, and pressure gradient.

References

1.
Ford
,
R. A.
, and
Hamdan
,
M. H.
,
1998
, “
Coupled Parallel Flow Through Composite Porous Layers
,”
Appl. Math. Comput.
,
97
(
2–3
), pp.
261
271
.10.1016/S0096-3003(97)10141-2
2.
Ford
,
R. A.
,
Abu Zaytoon
,
M. S.
, and
Hamdan
,
M. H.
,
2016
, “
Simulation of Flow Through Layered Porous Media
,”
IOSR J. Eng.
,
6
(
6
), pp.
48
61
.http://www.iosrjen.org/pages/volume6-issue6(part-1).html
3.
Allan
,
F. M.
, and
Hamdan
,
M. H.
,
2002
, “
Fluid Mechanics of the Interface Region Between Two Porous Layers
,”
Appl. Math. Comput.
,
128
(
1
), pp.
37
43
.10.1016/S0096-3003(01)00016-9
4.
Mahmoud
,
M. S.
, and
Deresiewicz
,
H.
,
1980
, “
Settlement of Inhomogeneous Consolidating Soils-I: The Single-Drained Layer Under Confined Compression
,”
Int. J. Numer. Anal. Methods Geomech.
,
4
(
1
), pp.
57
72
.10.1002/nag.1610040105
5.
Cheng
,
A. H.-D.
,
1984
, “
Darcy's Flow With Variable Permeability: A Boundary Integral Solution
,”
Water Resour. Res.
,
20
(
7
), pp.
980
984
.10.1029/WR020i007p00980
6.
Abu Zaytoon
,
M. S.
,
Alderson
,
T. L.
, and
Hamdan
,
M. H.
,
2016
, “
Flow Over a Darcy Porous Layer of Variable Permeability
,”
J. Appl. Math. Phys.
,
4
(
1
), pp.
86
99
.10.4236/jamp.2016.41013
7.
Hamdan
,
M. H.
, and
Abu Zaytoon
,
M. S.
,
2017
, “
Flow Over a Finite Forchheimer Porous Layer With Variable Permeability
,”
IOSR J. Mech. Civ. Eng.
,
14
(
3
), pp.
15
22
.10.9790/1684-1403041522
8.
Goyeau
,
B.
,
Lhuillier
,
D.
,
Gobin
,
D.
, and
Velarde
,
M. G.
,
2003
, “
Momentum Transport at a Fluid–Porous Interface
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
4071
4081
.10.1016/S0017-9310(03)00241-2
9.
Hill
,
A. A.
, and
Straughan
,
B.
,
2008
, “
Poiseuille Flow in a Fluid Overlying a Porous Medium
,”
J. Fluid Mech.
,
603
, pp.
137
149
.10.1017/S0022112008000852
10.
Hill
,
A. A.
,
2009
, “
Instability of Poiseuille Flow in a Fluid Overlying a Glass Bead Packed Porous Layer
,”
Acta Mech.
,
206
(
1–2
), pp.
95
103
.10.1007/s00707-008-0099-2
11.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
The Effect of a Transition Layer Between a Fluid and a Porous Medium: Shear Flow in a Channel
,”
Transp. Porous Media
,
78
(
3
), pp.
477
487
.10.1007/s11242-009-9342-0
12.
Abu Zaytoon
,
M. S.
,
Alderson
,
T. L.
, and
Hamdan
,
M. H.
,
2018
, “
A Study of Flow Through a Channel Bounded by a Brinkman Transition Porous Layer
,”
J. Appl. Math. Phys.
,
6
(
1
), pp.
264
282
.10.4236/jamp.2018.61025
13.
Hamdan
,
M. H.
, and
Kamel
,
M. T.
,
2011
, “
On the N i ( x ) Integral Function and Its Application to the Airys Non-Homogeneous Equation
,”
Appl. Math. Comput.
,
217
(
17
), pp.
7349
7360
.10.1016/j.amc.2011.02.025
14.
Tao
,
J.
,
Yao
,
J.
, and
Huang
,
Z.
,
2013
, “
Analysis of the Laminar Flow in a Transition Layer With Variable Permeability Between a Free-Fluid and a Porous Medium
,”
Acta Mech.
,
224
(
9
), pp.
1943
1955
.10.1007/s00707-013-0852-z
15.
Goharzadeh
,
A.
,
Khalili
,
A.
, and
Jorgensen
,
B. B.
,
2005
, “
Transition Layer at a Fluid–Porous Interface
,”
Phys. Fluids
,
17
(
5
), p.
057102
.10.1063/1.1894796
16.
Morad
,
M. R.
, and
Khalili
,
A.
,
2009
, “
Transition Layer Thickness in a Fluid–Porous Medium of Multi-Sized Spherical Beads
,”
Exp. Fluids
,
46
(
2
), pp.
323
330
.10.1007/s00348-008-0562-9
17.
Gu
,
Z.
, and
Wang
,
H.
,
1991
, “
Gravity Waves Over Porous Bottoms
,”
Coastal Eng.
,
15
(
5–6
), pp.
497
524
.10.1016/0378-3839(91)90025-C
18.
Hall
,
K. R.
,
Smith
,
G. M.
, and
Turcke
,
D. J.
,
1995
, “
Comparison of Oscillatory and Stationary Flow Through Porous Media
,”
Coastal Eng.
,
24
(
3–4
), pp.
217
232
.10.1016/0378-3839(94)00017-R
19.
Burcharth
,
H. F.
, and
Andersen
,
O. K.
,
1995
, “
On the One-Dimensional Steady and Unsteady Porous Flow Equations
,”
Coastal Eng.
,
24
(
3–4
), pp.
233
257
.10.1016/0378-3839(94)00025-S
20.
Lowe
,
R. J.
,
Koseff
,
J. R.
, and
Monismith
,
S. G.
,
2005
, “
Oscillatory Flow Through Submerged Canopies: 1. Velocity Structure
,”
J. Geophys. Res.
,
110
(
C10
), pp.
1
17
.10.1029/2004JC002788
21.
Soares
,
C.
,
Padoin
,
N.
,
Muller
,
D.
,
Hotza
,
D.
, and
Rambo
,
C. R.
,
2015
, “
Evaluation of Resistances to Fluid Flow in Fibrous Ceramic Medium
,”
Appl. Math. Modell.
,
39
(
23–24
), pp.
7197
7210
.10.1016/j.apm.2015.02.014
22.
Li
,
Q.-X.
,
Pan
,
M.
,
Zhou
,
Q.
, and
Dong
,
Y.-H.
,
2019
, “
Turbulent Drag Reduction by Spanwise Oscillations of a Channel Wall With Porous Layer
,”
Comput. Fluids
,
180
, pp.
1
10
.10.1016/j.compfluid.2018.12.007
23.
Zhang
,
K.
,
Wang
,
C.-A.
, and
Tan
,
J.-Y.
,
2018
, “
Numerical Study With openfoam on Heat Conduction Problems in Heterogeneous Media
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1156
1162
.10.1016/j.ijheatmasstransfer.2018.04.038
24.
Alokaily
,
S. A.
,
2021
, “
Simulation of Flow Through Variable Permeability Darcy–Brinkman Layers
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071205
.10.1115/1.4050137
25.
Brinkman
,
H. C.
,
1949
, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
1
, p.
27
.10.1007/BF02120313
26.
Saffman
,
P. G.
,
1971
, “
On the Boundary Condition at the Surface of a Porous Medium
,”
Stud. Appl. Math.
,
50
(
2
), pp.
93
101
.10.1002/sapm197150293
27.
Neale
,
G.
, and
Nader
,
W.
,
1974
, “
Practical Significance of Brinkman's Extension of Darcy's Law: Coupled Parallel Flows Within a Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
,
52
(
4
), pp.
475
478
.10.1002/cjce.5450520407
28.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1985
, “
The Brinkman Model for Natural Convection About a Semi-Infinite Vertical Flat Plate in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
683
697
.10.1016/0017-9310(85)90190-5
29.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
,
1995
, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid-I. Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2635
2645
.10.1016/0017-9310(94)00346-W
30.
Chandrasekhara
,
B. C.
,
Kantha
,
R.
, and
Rudraiah
,
N.
,
1979
, “
Effect of Slip on Porous-Walled Squeeze Films in the Presence of a Transverse Magnetic Field
,”
Appl. Sci. Res.
,
34
(
4
), pp.
393
411
.10.1007/BF00383973
31.
Rudraiah
,
N.
,
1985
, “
Coupled Parallel Flows in a Channel and a Bounding Porous Medium of Finite Thickness
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
322
329
.10.1115/1.3242486
32.
Suman
,
R.
, and
Ruth
,
D.
,
1993
, “
Formation Factor and Tortuosity of Homogeneous Porous Media
,”
Transp. Porous Media
,
12
(
2
), pp.
185
206
.10.1007/BF00616979
33.
Liao
,
S. J.
,
1999
, “
An Explicit, Totally Analytic Approximate Solution for Blasius' Viscous Flow Problems
,”
Int. J. Nonlinear Mech.
,
34
(
4
), pp.
759
778
.10.1016/S0020-7462(98)00056-0
You do not currently have access to this content.