Abstract

Knowledge of the modal parameters of the guide vane is essential for evaluating the operating stability of pump-turbines. In the present investigation, experiments and simulations are designed to analyze the influence of submergence level and sidewall clearance on the vibration characteristics of a guide vane-like structure. The results show that the type of mode shape remains unchanged at different submergence levels, while the position of the node line (NL) demonstrates a slight shift. According to the angle of the NL and the free surface, the mode types are divided into parallel NL, vertical NL, and slanted NL modes. The added mass tends to increase with increasing submergence levels, while the slope of added mass in conjunction with the submergence level, is dependent on the mode type. In particular, in relation to the parallel NL mode, the slope is almost zero, if the free surface is close to the NL region; with regard to the slanted NL mode, the slope in the NL region is significantly smaller than that outside this region; in the case of the vertical NL mode, the slope remains approximately constant. The damping ratio increases with increasing submergence level for the vertical NL mode. While the damping ratios for the parallel and slanted NL modes are decreased if the free surface is close to the NL regions. In addition, as the side wall clearance increases, both the added mass and damping ratio tend to decrease.

References

1.
Shi
,
F.
, and
Tsukamoto
,
H.
,
2001
, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
466
474
.10.1115/1.1385835
2.
Roth
,
S.
,
2012
, “
Fluid-Structure Coupling Effects on the Dynamic Response of Pump-Turbine Guide Vanes
,”
Ph.D. dissertation
,
Swiss Federal Institute of Technology Lausanne
,
Lausanne, Switzerland
.https://infoscience.epfl.ch/record/180641?ln=en
3.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2014
, “
Numerical and Experimental Study of a Nearby Solid Boundary and Partial Submergence Effects on Hydrofoil Added Mass
,”
Comput. Fluids
,
91
(
7
), pp.
1
9
.10.1016/j.compfluid.2013.12.003
4.
Soltani Dehkharqani
,
A.
,
Aidanpää
,
J.-O.
,
Engström
,
F.
, and
Cervantes
,
M. J.
,
2018
, “
A Review of Available Methods for the Assessment of Fluid Added Mass, Damping, and Stiffness With an Emphasis on Hydraulic Turbines
,”
ASME Appl. Mech. Rev.
,
70
(
5
), p.
050801
.10.1115/1.4042279
5.
Kramer
,
M. R.
,
Liu
,
Z.
, and
Yin
,
L. Y.
,
2013
, “
Free Vibration of Cantilevered Composite Plates in Air and in Water
,”
Compos. Struct.
,
95
, pp.
254
263
.10.1016/j.compstruct.2012.07.017
6.
Motley
,
M. R.
,
Kramer
,
M. R.
, and
Young
,
Y. L.
,
2013
, “
Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates
,”
Compos. Struct.
,
96
, pp.
365
375
.10.1016/j.compstruct.2012.09.023
7.
Trivedi
,
C.
,
2017
, “
A Review on Fluid Structure Interaction in Hydraulic Turbines: A Focus on Hydrodynamic Damping
,”
Eng. Failure Anal.
,
77
, pp.
1
22
.10.1016/j.engfailanal.2017.02.021
8.
Lévy
,
S.
,
2013
, “
Fluid-Structure Interactions: Mechanical Response of a Partially Immersed Hydrofoil
,”
Semester Project EPFL
,
Swiss Federal Institute of Technology Lausanne
,
Lausanne, Switzerland
.
9.
Zeng
,
Y.
,
Yao
,
Z.
,
Zhang
,
S.
,
Wang
,
F.
, and
Xiao
,
R.
,
2021
, “
Influence of Tip Clearance on the Hydrodynamic Damping Characteristics of a Hydrofoil
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061202
.10.1115/1.4049675
10.
Naik
,
T.
,
Longmire
,
E. K.
, and
Mantell
,
S. C.
,
2003
, “
Dynamic Response of a Cantilever in Liquid Near a Solid Wall
,”
Sens. Actuators A: Phys.
,
102
(
3
), pp.
240
254
.10.1016/S0924-4247(02)00398-9
11.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Bossio
,
M.
,
2017
, “
Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches
,”
Sensors
,
17
(
3
), p.
660
.10.3390/s17030660
12.
Seeley
,
C.
,
Coutu
,
A.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Marmont
,
H.
,
2012
, “
Characterization of Hydrofoil Damping Due to Fluid-Structure Interaction Using Piezocomposite Actuators
,”
Smart Mater. Struct.
,
21
(
3
), p.
035027
.10.1088/0964-1726/21/3/035027
13.
Bergan
,
C. W.
,
Tengs
,
E. O.
,
Solemslie
,
B. W.
, and
Dahlhaug
,
O. G.
,
2019
, “
An Experimental Investigation of the Hydrodynamic Damping of Vibrating Hydrofoils
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
6
), p.
062008
.10.1088/1755-1315/240/6/062008
14.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2016
, “
Experimental Mode Shape Determination of a Cantilevered Hydrofoil Under Different Flow Conditions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
19
), pp.
3408
3419
.10.1177/0954406215614335
15.
Rodriguez
,
C. G.
,
Flores
,
P.
,
Pierart
,
F. G.
,
Contzen
,
L. R.
, and
Egusquiza
,
E.
,
2012
, “
Capability of Structural–Acoustical FSI Numerical Model to Predict Natural Frequencies of Submerged Structures With Nearby Rigid Surfaces
,”
Comput. Fluids
,
64
, pp.
117
126
.10.1016/j.compfluid.2012.05.011
16.
Ergin
,
A.
, and
Uğurlu
,
B.
,
2003
, “
Linear Vibration Analysis of Cantilever Plates Partially Submerged in Fluid
,”
J. Fluids Struct.
,
17
(
7
), pp.
927
39
.10.1016/S0889-9746(03)00050-1
17.
Kutlu
,
A.
,
Uğurlu
,
B.
,
Omurtag
,
M. H.
, and
Ergin
,
A.
,
2012
, “
Dynamic Response of Mindlin Plates Resting on Arbitrarily Orthotropic Pasternak Foundation and Partially in Contact With Fluid
,”
Ocean Eng.
,
42
, pp.
112
125
.10.1016/j.oceaneng.2012.01.010
18.
Yao
,
Z. F.
,
Wang
,
F. J.
,
Dreyer
,
M.
, and
Farhat
,
M.
,
2014
, “
Effect of Trailing Edge Shape on Hydrodynamic Damping for a Hydrofoil
,”
J. Fluids Struct.
,
51
, pp.
189
198
.10.1016/j.jfluidstructs.2014.09.003
19.
Liang
,
Q. W.
,
Rodriguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
Numerical Simulation of Fluid Added Mass Effect on a Francis Turbine Runner
,”
Comput. Fluids
,
36
(
6
), pp.
1106
1118
.10.1016/j.compfluid.2006.08.007
20.
Muthuveerappan
,
G.
,
Ganesan
,
N.
, and
Veluswami
,
M. A.
,
1979
, “
A Note on Vibration of a Cantilever Plate Immersed in Water
,”
J. Sound Vib.
,
63
(
3
), pp.
385
391
.10.1016/0022-460X(79)90681-3
21.
Jeong
,
K. H.
, and
Kim
,
K. J.
,
2005
, “
Hydroelastic Vibration of a Circular Plate Submerged in a Bounded Compressible Fluid
,”
J. Sound Vib.
,
283
(
1–2
), pp.
153
172
.10.1016/j.jsv.2004.04.029
22.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Egusquiza
,
M.
,
2017
, “
Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank and Confined With a Nonrigid Cover
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021005
.10.1115/1.4035105
23.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Seidel
,
U.
, and
Weber
,
W.
,
2016
, “
Natural Frequencies of Rotating Disk-Like Structures Submerged Viewed From the Stationary Frame
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
082023
.10.1088/1755-1315/49/8/082023
24.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Liang
,
Q. W.
, and
Avellan
,
F.
,
2006
, “
Experimental Investigation of Added Mass Effects on a Francis Turbine Runner in Still Water
,”
J. Fluids Struct.
,
22
(
5
), pp.
699
712
.10.1016/j.jfluidstructs.2006.04.001
25.
Askari
,
E.
,
Jeong
,
K. H.
, and
Amabili
,
M.
,
2013
, “
Hydroelastic Vibration of Circular Plates Immersed in a Liquid-Filled Container With Free Surface
,”
J. Sound Vib.
,
332
(
12
), pp.
3064
3085
.10.1016/j.jsv.2013.01.007
26.
Gauthier
,
J. P.
,
Giroux
,
A. M.
,
Etienne
,
S.
, and
Gosselin
,
F. P.
,
2017
, “
A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines
,”
J. Fluids Struct.
,
69
, pp.
341
354
.10.1016/j.jfluidstructs.2017.01.004
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Fabien
,
Q.
,
2013
, “
Free Surface Effects on the Free Vibration of Partially Immersed Cantilevered Composite Plates
,”
Semester Project EPFL
,
Swiss Federal Institute of Technology Lausanne
,
Lausanne, Switzerland
.
29.
Kareem
,
A.
, and
Gurley
,
K.
,
1996
, “
Damping in Structures: Its Evaluation and Treatment of Uncertainty
,”
J. Wind Eng. Ind. Aerodyn.
,
59
(
2–3
), pp.
131
157
.10.1016/0167-6105(96)00004-9
You do not currently have access to this content.