Abstract

Experimental studies are carried out on an axisymmetric cylindrical base body for six freestream Mach numbers between 0.54 and 1.41. Unsteady pressure is measured on the base surface using high-frequency response Kulite pressure transducers. The effect of passive flow control devices on the mean base pressure and the unsteady characteristics of base pressure have been studied. A blunt base, a conventional cavity device, and three different ventilated cavity devices have been tested along with four different rounded base lip devices. A total of 20 different base geometric modifications are tested at 6 freestream Mach numbers resulting in 120 test cases. The cavity devices improve the base pressure as compared to the blunt base case, particularly for freestream Mach numbers more than 0.98. Among all the cases considered, a maximum increase of 8.6% in the base pressure coefficient is noticed for the normal ventilated cavity device as compared to the blunt base case for freestream Mach number of 1.22. The power spectral density of base pressure fluctuations revealed the dominant peaks on the base surface. The Strouhal number associated with the coherent structures developing in the shear layer varies between 0.2 and 0.27 for the six freestream Mach numbers considered. In the presence of cavity devices, dominant peaks are observed for Strouhal numbers between 1 and 5. The root-mean-square, skewness, kurtosis of the base pressure fluctuations for all the cases are presented. Maximum reduction in base pressure fluctuation is observed for the normal and inclined ventilated cavity device configuration test cases.

References

1.
Viswanath
,
P. R.
,
1996
, “
Flow Management Techniques for Base and Afterbody Drag Reduction
,”
Prog. Aerosp. Sci.
,
32
(
2–3
), pp.
79
129
.10.1016/0376-0421(95)00003-8
2.
Chang
,
P. K.
,
2014
,
Separation of Flow
, Pergamon Press,
Elsevier, Amsterdam, The Netherlands
.
3.
Chapman
,
D. R.
,
1951
, “
An Analysis of Base Pressure at Supersonic Velocities and Comparison With Experiment
,” NACA, Washington, DC, Report No.
NACA TN-2137
.https://digital.library.unt.edu/ark:/67531/metadc65505/
4.
Korst
,
H. H.
,
1956
, “
A Theory for Base Pressures in Transonic and Supersonic Flow
,”
J. Appl. Mech.
,
23
(
4
), pp.
593
600
.10.1115/1.4011405
5.
Crocco
,
L.
, and
Lees
,
L.
,
1952
, “
A Mixing Theory for the Interaction Between Dissipative Flows and Nearly Isentropic Streams
,”
J. Aeronaut. Sci.
,
19
(
10
), pp.
649
676
.10.2514/8.2426
6.
Deck
,
S.
, and
Thorigny
,
P.
,
2007
, “
Unsteadiness of an Axisymmetric Separating–Reattaching Flow: Numerical Investigation
,”
Phys. Fluids
,
19
(
6
), p.
065103
.10.1063/1.2734996
7.
Kawai
,
S.
, and
Fujii
,
K.
,
2005
, “
Computational Study of a Supersonic Base Flow Using Hybrid Turbulence Methodology
,”
AIAA J.
,
43
(
6
), pp.
1265
1275
.10.2514/1.13690
8.
Janssen
,
J. R.
, and
Dutton
,
J. C.
,
2004
, “
Time-Series Analysis of Supersonic Base-Pressure Fluctuations
,”
AIAA J.
,
42
(
3
), pp.
605
613
.10.2514/1.4071
9.
Deprés
,
D.
,
Reijasse
,
P.
, and
Dussauge
,
J. P.
,
2004
, “
Analysis of Unsteadiness in Afterbody Transonic Flows
,”
AIAA J.
,
42
(
12
), pp.
2541
2550
.10.2514/1.7000
10.
Schrijer
,
F. F. J.
,
Sciacchitano
,
A.
, and
Scarano
,
F.
,
2014
, “
Spatio-Temporal and Modal Analysis of Unsteady Fluctuations in a High-Subsonic Base Flow
,”
Phys. Fluids
,
26
(
8
), p.
086101
.10.1063/1.4891257
11.
Bolgar
,
I.
,
Scharnowski
,
S.
, and
Kähler
,
C. J.
,
2018
, “
The Effect of the Mach Number on a Turbulent Backward-Facing Step Flow
,”
Flow, Turbul. Combust.
,
101
(
3
), pp.
653
680
.10.1007/s10494-018-9921-7
12.
Bearman
,
P. W.
,
1967
, “
The Effect of Base Bleed on the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge
,”
Aeronaut. Q.
,
18
(
3
), pp.
207
224
.10.1017/S0001925900004212
13.
Kim
,
J.
,
Hahn
,
S.
,
Kim
,
J.
,
Lee
,
D. K.
,
Choi
,
J.
,
Jeon
,
W. P.
, and
Choi
,
H.
,
2004
, “
Active Control of Turbulent Flow Over a Model Vehicle for Drag Reduction
,”
J. Turbul.
,
5
(
19
), pp.
1
12
.10.1088/1468-5248/5/1/019
14.
Boucinha
,
V.
,
Weber
,
R.
, and
Kourta
,
A.
,
2011
, “
Drag Reduction of a 3D Bluff Body Using Plasma Actuators
,”
Int. J. Aerodyn.
,
1
(
3/4
), pp.
262
281
.10.1504/IJAD.2011.038845
15.
Reedy
,
T. M.
,
Elliott
,
G. S.
,
Dutton
,
J. C.
, and
Lee
,
Y.
,
2012
, “
Passive Control of High-Speed Separated Flows Using Splitter Plates
,”
AIAA J.
,
50
(
7
), pp.
1586
1595
.10.2514/1.J051566
16.
Kruiswyk
,
R. W.
, and
Dutton
,
J. C.
,
1990
, “
Effects of a Base Cavity on Subsonic Near-Wake Flow
,”
AIAA J.
,
28
(
11
), pp.
1885
1893
.10.2514/3.10495
17.
Mair
,
W. A.
,
1965
, “
The Effect of a Rear-Mounted Disc on the Drag of a Blunt-Based Body of Revolution
,”
Aeronaut. Q.
,
16
(
4
), pp.
350
360
.10.1017/S0001925900003589
18.
Powers
,
S. G.
,
1991
, “
Flight Tests of External Modifications Used to Reduce Blunt Base Drag
,”
J. Aircr.
,
28
(
8
), pp.
517
525
.10.2514/3.46057
19.
Kidd
,
J.
,
1989
, “
An Investigation of Drag Reduction Using Stepped Afterbodies
,”
27th Aerospace Sciences Meeting
, Reno, NV, p.
333
.
20.
Raju
,
C.
, and
Viswanath
,
P. R.
,
1998
, “
Base Drag Reduction Caused by Riblets on a GAW (2) Airfoil
,”
J. Aircr.
,
35
(
6
), pp.
988
991
.10.2514/2.2403
21.
Janssen
,
J. R.
, and
Dutton
,
J. C.
,
2005
, “
Sub-Boundary-Layer Disturbance Effects on Supersonic Base-Pressure Fluctuations
,”
J. Spacecraft Rockets
,
42
(
6
), pp.
1017
1024
.10.2514/1.12769
22.
Mariotti
,
A.
,
Buresti
,
G.
,
Gaggini
,
G.
, and
Salvetti
,
M. V.
,
2017
, “
Separation Control and Drag Reduction for Boat-Tailed Axisymmetric Bodies Through Contoured Transverse Grooves
,”
J. Fluid Mech.
,
832
, pp.
514
549
.10.1017/jfm.2017.676
23.
Tripathi
,
A.
,
Manisankar
,
C.
, and
Verma
,
S. B.
,
2015
, “
Control of Base Pressure for a Boat-Tailed Axisymmetric Afterbody Via Base Geometry Modifications
,”
Aerosp. Sci. Technol.
,
45
, pp.
284
293
.10.1016/j.ast.2015.05.021
24.
Mathur
,
N. B.
, and
Viswanath
,
P. R.
,
2004
, “
Drag Reduction From Square Base Afterbodies at High Speeds
,”
J. Aircr.
,
41
(
4
), pp.
811
820
.10.2514/1.532
25.
Merz
,
R. A.
,
Page
,
R. H.
, and
Przirembel
,
C. E. G.
,
1978
, “
Subsonic Axisymmetric Near-Wake Studies
,”
AIAA J.
,
16
(
7
), pp.
656
662
.10.2514/3.60954
26.
Viswanath
,
P. R.
, and
Patil
,
S. R.
,
1990
, “
Effectiveness of Passive Devices for Axisymmetric Base Drag Reduction at Mach 2
,”
J. Spacecraft Rockets
,
27
(
3
), pp.
234
237
.10.2514/3.26130
27.
Rollstin
,
L. R.
,
1990
, “
Measurement of in-Flight Base Pressure on an Artillery-Fired Projectile
,”
J. Spacecraft Rockets
,
27
(
1
), pp.
5
6
.10.2514/3.26096
28.
Mueller
,
T. J.
,
1968
, “
Determination of the Turbulent Base Pressure in Supersonic Axisymmetric Flow
,”
J. Spacecraft Rockets
,
5
(
1
), pp.
101
107
.10.2514/3.29192
29.
Herrin
,
J. L.
, and
Dutton
,
J. C.
,
1994
, “
Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody
,”
AIAA J.
,
32
(
1
), pp.
77
83
.10.2514/3.11953
30.
Chow
,
W. L.
,
1985
, “
Base Pressure of a Projectile Within the Transonic Flight Regime
,”
AIAA J.
,
23
(
3
), pp.
388
395
.10.2514/3.8925
31.
Simon
,
F.
,
Deck
,
S.
,
Guillen
,
P.
, and
Sagaut
,
P.
,
2006
, “
Reynolds-Averaged Navier–Stokes/Large-Eddy Simulations of Supersonic Base Flow
,”
AIAA J.
44
(
11
), pp.
2578
2590
.10.2514/1.21366
You do not currently have access to this content.