Abstract

An experimental investigation on the flow separation of a hypersonic laminar boundary layer flow over a compression ramp with angles of 32 deg, 36 deg, and 40 deg is carried out in a Mach 5 hypersonic wind tunnel. The detailed structures are measured by particle image velocimetry (PIV), and some typical flow structures, such as a shear layer, separation shock, recirculation zone and reattachment shock, are clearly captured. In the 32 deg compression ramp flow, the hypersonic laminar flow does not experience flow separation, and the boundary layer always attaches to the ramp surface. When the ramp angle increases to 36 deg, a typical flow separation appears in the hypersonic laminar flow, and a shear layer and reattachment shock arise within the flow field. As the ramp angle increases to 40 deg, the separation shock moves upstream, the reattachment shock moves downstream, and the recirculation zone expands. Proper orthogonal decomposition (POD) analysis is performed on the velocity contours for three cases, revealing the spatial structure of the flow field. As the ramp angle increases, the coherent flow structures are captured more effectively by less POD modes, and there are more coherent structures in the flow field of a large-angle compression ramp. Finally, numerical investigations of the flow separation on three different compression ramps are carried out, and the simulation results are consistent with the measurement results.

References

1.
Agostini
,
L.
,
Larchevêque
,
L.
, and
Dupont
,
P.
,
2015
, “
Mechanism of Shock Unsteadiness in Separated Shock/Boundary-Layer Interactions
,”
Phys. Fluids
,
27
(
12
), p.
126103
.10.1063/1.4937350
2.
Hadjadj
,
A.
, and
Dussauge
,
J.-P.
,
2009
, “
Shock Wave Boundary Layer Interaction
,”
Shock Waves
,
19
(
6
), pp.
449
452
.10.1007/s00193-009-0238-2
3.
Zheltovodov
,
A.
,
2006
, “
Some Advances in Research of Shock Wave Turbulent Boundary Layer Interactions
,”
AIAA.
Paper No. 2006–496. 10.2514/6.2006-496
4.
Gaitonde
,
D. V.
,
2013
, “
Progress in Shock Wave/Boundary Layer Interactions
,”
AIAA
Paper No. 2013–2607.10.2514/6.2013-2607
5.
Gaitonde
,
D. V.
,
2015
, “
Progress in Shock Wave/Boundary Layer Interactions
,”
Prog. Aerosp. Sci.
,
72
, pp.
80
99
.10.1016/j.paerosci.2014.09.002
6.
Holden
,
M.
,
2006
, “
Historical Review of Experimental Studies and Prediction Methods to Describe Laminar and Turbulent Shock Wave/Boundary Layer Interactions in Hypersonic Flows
,”
AIAA
Paper No. 2006–494.10.2514/6.2006-494
7.
Wasistho
,
B.
,
2006
, “
Transpiration Induced Shock Boundary-Layer Interactions
,”
ASME J. Fluids Eng
.,
128
(
5
), pp.
976
986
.10.1115/1.2236127
8.
John
,
B.
, and
Kulkarni
,
V.
,
2014
, “
Numerical Assessment of Correlations for Shock Wave Boundary Layer Interaction
,”
Comput. Fluids
,
90
, pp.
42
50
.10.1016/j.compfluid.2013.11.011
9.
Wu
,
M.
, and
Martin
,
M. P.
,
2008
, “
Analysis of Shock Motion in Shockwave and Turbulent Boundary Layer Interaction Using Direct Numerical Simulation Data
,”
J. Fluid Mech.
,
594
, pp.
71
83
.10.1017/S0022112007009044
10.
Tong
,
F. L.
,
Li
,
X. L.
,
Duan
,
Y. H.
, and
Yu
,
C. P.
,
2017
, “
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Subjected to a Curved Compression Ramp
,”
Phys. Fluids
,
29
(
12
), p.
125101
.10.1063/1.4996762
11.
Yu
,
C. P.
,
Hong
,
R. K.
,
Xiao
,
Z. L.
, and
Chen
,
S. Y.
,
2013
, “
Subgrid-Scale Eddy Viscosity Model for Helical Turbulence
,”
Phys. Fluids
,
25
(
9
), p.
095101
.10.1063/1.4819765
12.
Zhou
,
H.
,
Li
,
X. L.
,
Qi
,
H.
, and
Yu
,
C. P.
,
2019
, “
Subgrid-Scale Model for Large-Eddy Simulation of Transition and Turbulence in Compressible Flows
,”
Phys. Fluids
,
31
(
12
), p.
125118
.10.1063/1.5128061
13.
Porter
,
K. M.
, and
Poggie
,
J.
,
2019
, “
Selective Upstream Influence on the Unsteadiness of a Separated Turbulent Compression Ramp Flow
,”
Phys. Fluids
,
31
(
1
), p.
016104
.10.1063/1.5078938
14.
Cao
,
S. B.
,
Klioutchnikov
,
I.
, and
Olivier
,
H.
,
2019
, “
Görtler Vortices in Hypersonic Flow on Compression Ramps
,”
AIAA J.
,
57
(
9
), pp.
3874
3884
.10.2514/1.J057975
15.
Hossain Joy
,
M.
,
Rahman
,
S.
, and
Toufique Hasan
,
A.
,
2018
, “
Effects of Surface Waviness on the Interaction of Oblique Shock Wave With Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041205
.10.1115/1.4038214
16.
Pathak
,
U.
,
Roy
,
S.
, and
Sinha
,
K.
,
2018
, “
A Phenomenological Mmodel for Turbulent Heat Flux in High-Speed Flows With Shock-Induced Flow Separation
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051203
.10.1115/1.4038760
17.
Wu
,
J.-S.
, and
Tseng
,
K.-C.
,
2003
, “
Parallel Particle Simulation of the Near-Continuum Hypersonic Flows Over Compression Ramps
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
181
188
.10.1115/1.1523068
18.
Funderburk
,
M.
, and
Narayanaswamy
,
V.
,
2016
, “
Experimental Investigation of Primary and Corner Shock Boundary Layer Interactions at Mild Back Pressure Ratios
,”
Phys. Fluids
,
28
(
8
), p.
086102
.10.1063/1.4960963
19.
Estruch-Samper
,
D.
,
2016
, “
Reattachment Heating Upstream of Short Compression Ramps in Hypersonic Flow
,”
Exp. Fluids
,
57
(
5
), p.
92
.10.1007/s00348-016-2177-x
20.
Vanstone
,
L.
,
Musta
,
M. N.
,
Seckin
,
S.
, and
Clemens
,
N.
,
2018
, “
Experimental Study of the Mean Structure and Quasi-Conical Scaling of a Swept-Compression-Ramp Interaction at Mach 2
,”
J. Fluid Mech.
,
841
, pp.
1
27
.10.1017/jfm.2018.8
21.
Ganapathisubramani
,
B.
,
Clemens
,
N. T.
, and
Dolling
,
D. S.
,
2006
, “
Large-Scale Motions in a Supersonic Turbulent Boundary Layer
,”
J. Fluid Mech.
,
556
, pp.
271
282
.10.1017/S0022112006009244
22.
Ganapathisubramani
,
B.
,
Clemens
,
N. T.
, and
Dolling
,
D. S.
,
2007
, “
Effects of Upstream Boundary Layer on the Unsteadiness of Shock-Induced Separation
,”
J. Fluid Mech.
,
585
, pp.
369
394
.10.1017/S0022112007006799
23.
Ganapathisubramani
,
B.
,
Clemens
,
N. T.
, and
Dolling
,
D. S.
,
2009
, “
Low-Frequency Dynamics of Shock-Induced Separation in a Compression Ramp Interaction
,”
J. Fluid Mech.
,
636
, pp.
397
425
.10.1017/S0022112009007952
24.
Wu
,
Y.
,
Yi
,
S. H.
,
He
,
L.
,
Chen
,
Z.
, and
Zhu
,
Y. Z.
,
2015
, “
Flow Visualization of Mach 3 Compression Ramp With Different Upstream Boundary Layers
,”
J. Visual.-Jpn.
,
18
(
4
), pp.
631
644
.10.1007/s12650-014-0255-9
25.
Zhuang
,
Y.
,
Tan
,
H. J.
,
Liu
,
Y. Z.
,
Zhang
,
Y. C.
, and
Ling
,
Y.
,
2017
, “
High Resolution Visualization of Görtler-Like Vortices in Supersonic Compression Ramp Flow
,”
J. Visual.-Jpn.
,
20
(
3
), pp.
505
508
.10.1007/s12650-016-0415-1
26.
Sun
,
Z. Z.
,
Gan
,
T.
, and
Wu
,
Y.
,
2020
, “
Shock-Wave/Boundary-Layer Interactions at Compression Ramps Studied by High-Speed Schlieren
,”
AIAA J.
,
58
(
4
), pp.
1681
1688
.10.2514/1.J058257
27.
Lu
,
J.
,
Yang
,
H.
,
Zhang
,
Q. H.
, and
Yin
,
Z. P.
,
2019
, “
PIV Measurements of Hypersonic Laminar Flow Over a Compression Ramp
,”
13th International Symposium on Particle Image Velocimetry
, Munich, Germany, July 22–24, pp.
797
806
.https://atheneforschung.unibw.de/download/128813/128813.pdf
28.
Samimy
,
M.
, and
Lele
,
S. K.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids A
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
29.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin, Germany
.
30.
Timmins
,
B. H.
,
Wilson
,
B. W.
,
Smith
,
B. L.
, and
Vlachos
,
P. P.
,
2012
, “
A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements
,”
Exp. Fluids
,
53
(
4
), pp.
1133
1147
.10.1007/s00348-012-1341-1
31.
Zhao
,
X. H.
, and
Zhang
,
Q. H.
,
2018
, “
Experimental and Numerical Study of Coherent Structures in a Roughness Induced Transition Boundary Layer at Mach 5
,”
Phys. Fluids
,
30
(
10
), p.
104102
.10.1063/1.5047258
32.
Huntley
,
M.
, and
Smits
,
A.
,
2000
, “
Transition Studies on an Elliptic Cone in Mach 8 Flow Using Filtered Rayleigh Scattering
,”
Eur. J. Mech. B-Fluids
,
19
(
5
), pp.
695
706
.10.1016/S0997-7546(00)00130-8
33.
Clemens
,
N. T.
, and
Narayanaswamy
,
V.
,
2014
, “
Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
469
492
.10.1146/annurev-fluid-010313-141346
34.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
35.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
36.
Pagella
,
A.
,
Babucke
,
A.
, and
Rist
,
U.
,
2004
, “
Two-Dimensional Numerical Investigations of Small-Amplitude Disturbances in a Boundary Layer at Ma = 4.8: Compression Corner Versus Impinging Shock Wave
,”
Phys. Fluids
,
16
(
7
), pp.
2272
2281
.10.1063/1.1738414
You do not currently have access to this content.