Abstract

Discharge from sluice gate flows is commonly calculated using the Torricelli outflow velocity, which is inaccurate and must be corrected by a discharge coefficient. Moreover, this approach commonly only considers the relative gate opening, without including the impact of three-dimensional (3D) effects, scaling effects, different velocity profiles, and friction forces. Aiming for a theoretical approach that can address all flow effects for sluice gate discharge calculations, the authors applied the momentum balance theory to this problem. First, the control volume was introduced, and parameterization equations for the pressure distributions and momentum coefficients at the control volume borders for both the standard and the inclined sluice gates were determined using computational fluid dynamics (CFD) simulations. The results show good agreements with the discharge measurement results of frequently quoted experimental studies from other authors, demonstrating the potential of this approach. Also, one example of the impact of the 3D effect of various channel widths was investigated with the momentum balance theory.

References

1.
Keutner
,
C.
,
1932
, “
Wasserabführungsvermögen von scharfkantigen und abgerundeten Planschützen
,”
Die Bautechnik
,
Ernst & Sohn Verlag für Architektur und technische Wissenschaften
,
Berlin
, pp.
266
269
.
2.
Weisbach
,
J. L.
,
1855
,
Die Experimental-Hydralik
,
JG Engelhardt
, Freiberg, Germany.
3.
Bornemann
,
K. R.
,
1880
, “
Über den Ausfluss bei Schützen und schützenartigen Mündungen
,”
Civilingenieur
,
26
, pp.
297
376
.
4.
Bornemann
,
K. R.
,
1871
, “
Versuche über den Ausfluss unter Wasser bei Schützen
,”
Civilingenieur
,
17
, pp.
45
60
.
5.
Boileau
,
P. P.
,
1854
,
Traité de la mésure des eaux courants ou expériences, observations et méthodes
,
Mallet-Bachelier
,
Paris, France
.
6.
Weisbach
,
J.
,
1862
,
Ingenieur und Maschinen Mechanik—Vierte verbesserte und vervollständigte Auflage
,
Friedrich Vieweg und Soh
,
Braunschweig, Germany
.
7.
Linnebrügge
,
A.
,
1879
, “
Wassermessung bei Schützenöffnungen unter Wasser
,”
Der Civilingenieur
,
Verlag von Arthur Felix, Leipzig
,
Germany
, pp.
25
40
.
8.
Rühlmann
,
M.
,
1857
,
Hydromechanik
,
Arnold'ische Buchhandlung, Leipzig
,
Germany
.
9.
Fawer
,
C.
,
1937
,
Etude de Quelques Ecoulements Permanents a Filets Courbes
,
Imprimerie La Concorde
,
Lausanne, Switzerland
.
10.
du Buat
,
P. L. G.
,
1786
,
Principes d'Hydraulique
,
Tome I, Imprimerie de Monsieur
,
Paris, France
.
11.
Holdhusen
,
J. S.
,
Citrini
,
D.
,
Corrsin
,
S.
,
Baines
,
W. D.
,
Streiff
,
A.
, and
Henry
,
H. R.
,
1950
, “
Discussion of Diffusion of Submerged Jets
,”
Trans. Am. Soc. Civ. Eng.
,
115
(
1
), pp.
665
694
.10.1061/TACEAT.0006368
12.
Swamee
,
P. K.
,
1992
, “
Sluice-Gate Discharge Equations
,”
J. Irrig. Drain. Eng.
,
118
(
1
), pp.
56
60
.10.1061/(ASCE)0733-9437(1992)118:1(56)
13.
Müller
,
H.
,
1935
, “
Rechnerische Ermittlung der Strömungsvorgänge an scharfkantigen Planschützen
,”
Wasserkraft Wasserwirtsch.
,
24
(
30
), pp.
281
284
.
14.
Kiczko
,
A.
,
Kubrak
,
J.
, and
Kubrak
,
E.
,
2015
, “
Experimental and Numerical Investigation of Non-Submerged Flow Under a Sluice Gate
,”
Ann. Warsaw Univ. Life Sci. – SGGW Land Reclam.
,
47
(
3
), pp.
187
201
.10.1515/sggw-2015-0024
15.
Silva
,
O.
, and
Rijo
,
M.
,
2017
, “
Flow Rate Measurements Under Sluice Gates
,”
J. Irrig. Drain. Eng.
,
143
(
6
), p.
06017001
.10.1061/(ASCE)IR.1943-4774.0001177
16.
Li
,
K. Y.
,
He
,
L. X.
,
Qiu
,
L. C.
,
Chen
,
J.
, and
Han
,
Y.
,
2018
, “
Experimental Investigation of Discharge Characteristics of Float Type Sluice Gate
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
191
, p.
012094
.10.1088/1755-1315/191/1/012094
17.
Rouse
,
H.
,
1946
,
Elementary Mechanics of Fluids
,
Dover Publications
,
New York
.
18.
Subramanya
,
K.
,
2009
,
Flow in Open Channels
,
Tata McGraw-Hill Publishing
,
New Delhi, India
.
19.
Zanke
,
U.
,
2013
,
Hydraulik für den Wasserbau 3. Auflage
,
Springer-Verlag
,
Berlin
.
20.
Freimann
,
R.
,
2014
,
Hydraulik für Bauingenieure—Grundlagen und Anwendungen
,
Carl Hanser Verlag
,
München, Germany
.
21.
Werner
,
W.
,
1963
, “
Ableitung einer kinematischen Beziehung zur Berechnung des Durchflusses unter Planschützen nach der Theorie freier Stromlinien
,”
Wiss. Z. Tech. Univ. Dresden
,
12
(
6
), pp.
1693
1699
.
22.
Gentilini
,
B.
,
1947
, “
Ecoulements sous les Vannes de Fond Inclinees ou a Secteur—Resultats Techniques et Experimentaux
,”
Houille Blanche
,
33
(
2
), pp.
145
149
.10.1051/lhb/1947016
23.
Aigner
,
D.
, and
Horlacher
,
H. B.
,
1997
, “
Optimum Design of Self-Regulating Spring Steel Throttles for Sewer Overflow Tanks
,”
Managing Water: Coping With Scarcity and Abundance
, Holly Jr., F. M. and Alsaffar, A., American Society of Civil Engineers, New York.
24.
Shivapur
,
A. V.
, and
Shesha Prakash
,
M. N.
,
2005
, “
Inclined Sluice Gate for Flow Measurement
,”
ISH J. Hydraul. Eng.
,
11
(
1
), pp.
46
56
.10.1080/09715010.2005.10514768
25.
Pajer
,
G.
,
1937
, “
Über den Strömugnsvorgang an einer unterströmten scharfkantigen Planschütze
,”
Z. Angew. Math. Mech.
,
17
(
5
), pp.
259
269
.10.1002/zamm.19370170503
26.
Vanden-Broeck
,
J.-M.
,
1997
, “
Numerical Calculations of the Free-Surface Flow Under a Sluice Gate
,”
J. Fluid Mech.
,
330
, pp.
339
347
.10.1017/S0022112096003849
27.
Binder
,
B. J.
, and
Vanden-Broeck
,
J.-M.
,
2007
, “
The Effect of Disturbances on the Flows Under a Sluice Gate and Past an Inclined Plate
,”
J. Fluid Mech.
,
576
, pp.
475
490
.10.1017/S0022112007004806
28.
Belaud
,
G.
, and
Litrico
,
X.
,
2008
, “
Closed-Form Solution of the Potential Flow in a Contracted Flume
,”
J. Fluid Mech.
,
599
, pp.
299
307
.10.1017/S0022112008000232
29.
Belaud
,
G.
,
Ludovic
,
C.
, and
Baume
,
J.-P.
,
2009
, “
Calculation of Contraction Coefficient Under Sluice Gates and Application to Discharge Measurement
,”
J. Hydraul. Eng.
,
135
(
12
), pp.
1086
1091
.10.1061/(ASCE)HY.1943-7900.0000122
30.
Shayan
,
H. K.
,
Farhoudi
,
J.
, and
Khezerloo
,
A. B.
,
2014
, “
Theoretical and Experimental Study of Flow From Sluice Gates
,”
Water Manage.
,
167
(
3
), pp.
152
163
.10.1680/wama.12.00032
31.
Roth
,
A.
, and
Hager
,
W. H.
,
1999
, “
Underflow of Standard Sluice Gate
,”
Exp. Fluids
,
27
(
4
), pp.
339
350
.10.1007/s003480050358
32.
Castro-Orgaz
,
O.
, and
Hager
,
W. H.
,
2014
, “
Transitional Flow at Standard Sluice Gate
,”
J. Hydraul. Res.
,
52
(
2
), pp.
264
273
.10.1080/00221686.2013.855951
33.
Malcherek
,
A.
,
2017
, “
A New Approach to Hydraulics Based on the Momentum Balance: Sharp Edged Outflows and Sluices
,”
Proceedings of the 37th IAHR World Congress
, Kuala Lumpur, Malaysia, Aug. 13–18, pp.
1515
1521
.
34.
Malcherek
,
A.
,
2018
, “
Eine neue, auf der Impulsbilanz basierende Theorie zur Hydraulik des Schützes
,”
Wasserwirtschaft
,
5
, pp.
40
44
.
35.
Malcherek
,
A.
,
2019
,
Fließgewässer—Hydraulik, Hydrologie, Morphologie und Wasserbau
,
Springer-Verlag
,
Berlin
.
36.
Kohan
,
S. J.
,
Samani
,
H. M. V.
, and
Ebrahimi
,
H.
,
2018
, “
Development of a New Hydraulic Relationship for Submerged Slide Gates
,”
J. Hydraul. Struct.
,
4
(
2
), pp.
10
16
.10.22055/JHS.2018.13760
37.
Kubrak
,
E.
,
Kubrak
,
J.
,
Kiczko
,
A.
, and
Kubrak
,
M.
,
2020
, “
Flow Measurements Using a Sluice Gate; Analysis of Applicability
,”
Water
,
12
(
3
), p.
819
.10.3390/w12030819
38.
Lauria
,
A.
,
Francesco
,
C.
,
Giancarlo
,
A.
, and
Antonino
,
D.
,
2020
, “
Discharge Coefficients for Sluice Gates Set in Weirs at Different Upstream Wall Inclinations
,”
Water
,
12
(
1
), p.
245
.10.3390/w12010245
39.
Epple
,
P.
,
Steppert
,
M.
,
Steber
,
M.
, and
Malcherek
,
A.
,
2018
, “
Theoretical and Numerical Analysis of the Pressure Distribution and Discharge Velocity in Flows Under Sluice Gates
,”
ASME
Paper No. FEDSM2018-83277.10.1115/FEDSM2018-83277
40.
Epple
,
P.
,
Steppert
,
M.
,
Malcherek
,
A.
, and
Fritsche
,
M.
,
2019
, “
Theoretical and Numerical Analysis of the Pressure Distribution and Discharge Velocity in Flows Under Inclined Sluice Gates
,”
ASME
Paper No. AJKFluids2019-5020.10.1115/AJKFluids2019-5020
41.
Steppert
,
M.
,
Epple
,
P.
, and
Malcherek
,
A.
,
2021
, “
Impact of Flow Characteristics on the Pressure Distribution on Sluice Gates
,”
ASME
Paper No. FEDSM2021-65396.10.1115/FEDSM2021-65396
42.
Malcherek
,
A.
, and
Müller
,
S.
,
2020
, “
The Application of the Integral Momentum Balance on the Pressure Drop of a Sudden Contraction
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011302
.10.1115/1.4048286
43.
Rajaratnam
,
N.
, and
Humphries
,
J. A.
,
1982
, “
Free Flow Upstream of Vertical Sluice Gates
,”
J. Hydraul. Res.
,
20
(
5
), pp.
427
437
.10.1080/00221688209499471
44.
Valentin
,
F.
,
1968
,
Einfluß des Unterwasserstandes auf die Strömungsverhältnisse beim Ausfluß unter einer Schütze
, Prof. Dr.-Ing P.-G. Franke, Hrsg.,
Institut für Hydraulik und Gewässerkunde Technische Hochschule München
,
München, Germany
.
45.
Han
,
T. Y.
, and
Chow
,
W. L.
,
1981
, “
The Study of Sluice Gate and Sharp-Crested Weir Through Hodograph Transformations
,”
ASME J. Appl. Mech.
,
48
(
2
), pp.
229
238
.10.1115/1.3157602
46.
Montes
,
J. S.
,
1997
, “
Irrotational Flow and Real Fluid Effects Under Planar Sluice Gates
,”
J. Hydraul. Eng.
,
123
(
3
), pp.
219
232
.10.1061/(ASCE)0733-9429(1997)123:3(219)
47.
Streeter
,
V.
,
1942
, “
The Kinetic Energy and Momentum Correction Factors for Pipes and Open Channels of Great Width
,”
Civ. Eng.
,
12
(
4
), pp.
212
213
.
48.
Singh
,
P.
,
Naik
,
B.
,
Tang
,
X.
,
Khatua
,
K. K.
,
Kumar
,
A.
, and
Banerjee
,
S.
,
2019
, “
Models for Kinetic Energy and Momentum Correction Coefficients for Non-Prismatic Compound Channels Using Regression and Gene Expression Programming
,”
SN Appl. Sci.
,
1
(
10
), p.
1229
.10.1007/s42452-019-1222-9
49.
Menter
,
F. R.
,
1993
, “
Zonal Two-Equation k-ω Turbulence Model for Aerodynamic Flows
,”
AIAA Paper No. 93-2906.
50.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598–
1605
.10.2514/3.12149
51.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
52.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k-ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2837
.10.2514/1.36541
53.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
54.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,” NASA, Cleveland, OH, NASA Technical Memorandum 106721.
55.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA Paper No. 92-439.
56.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
57.
Kim
,
D.-G.
,
2007
, “
Numerical Analysis of Free Flow Past a Sluice Gate
,”
KSCE J. Civ. Eng.
,
11
(
2
), pp.
127
132
.10.1007/BF02823856
58.
Cassan
,
L.
, and
Belaud
,
G.
,
2008
, “
RANS Simulation of the Flow Generated by Sluice Gates
,”
Proceedings of the Second International Junior Researcher and Engineer Workshop on Hydraulic Structures
, Pisa, Italy, July 30–Aug. 1, pp.
217
225
.
59.
Cassan
,
L.
, and
Belaud
,
G.
,
2010
, “
Experimental and Numerical Studies of the Flow Structure Generated by a Submerged Sluice Gate
,”
Proceedings of the First IAHR European Congress, Edinburgh
, UK, May 4–6, Paper No. 10946.
60.
Oner
,
A. A.
,
Akoz
,
M. S.
,
Kirkgoz
,
M. S.
, and
Gumus
,
V.
,
2012
, “
Experimental Validation of Volume of Fluid Method for a Sluice Gate Flow
,”
Adv. Mech. Eng.
, 2012, p.
461708
.10.1155/2012/461708
61.
Hohermuth
,
B.
,
Vetsch
,
D. F.
,
Schmocker
,
L.
,
Felder
,
S.
, and
Boes
,
R.
,
2019
, “
Air-Water Flow Downstream of High-Head Sluice Gates: Experimental and Numerical Investigations
,”
Proceedings of the 38th IAHR World Congress
, Panama City, Panama, Sept. 1–6, pp.
6187
6197
.10.3850/38WC092019-1503
You do not currently have access to this content.