Abstract

Buoyant shear layers encountered in many engineering and environmental applications have been studied by researchers for decades. Often, these flows have high Reynolds and Richardson numbers, which leads to significant/intractable space–time resolution requirements for direct numerical simulation (DNS) or large eddy simulation (LES). On the other hand, many of the important physical mechanisms, such as stress anisotropy, wake stabilization, and regime transition, inherently render eddy viscosity-based Reynolds-averaged Navier–Stokes (RANS) modeling inappropriate. Accordingly, we pursue second-moment closure (SMC), i.e., full Reynolds stress/flux/variance modeling, for moderate Reynolds number nonstratified, and stratified shear layers for which DNS is possible. A range of submodel complexity is pursued for the diffusion of stresses, density fluxes and variance, pressure strain and scrambling, and dissipation. These submodels are evaluated in terms of how well they are represented by DNS in comparison to the exact Reynolds-averaged terms, and how well they impact the accuracy of full RANS closure. For the nonstratified case, SMC model predicts the shear layer growth rate and Reynolds shear stress profiles accurately. Stress anisotropy and budgets are captured only qualitatively. Comparing DNS of exact and modeled terms, inconsistencies in model performance and assumptions are observed, including inaccurate prediction of individual statistics, non-negligible pressure diffusion, and dissipation anisotropy. For the stratified case, shear layer and gradient Richardson number growth rates, and stress, flux and variance decay rates, are captured with less accuracy than corresponding flow parameters in the nonstratified case. These studies lead to several recommendations for model improvement.

References

1.
Caulfield
,
C.
, and
Peltier
,
W.
,
2000
, “
The Anatomy of the Mixing Transition in Homogeneous and Stratified Free Shear Layers
,”
J. Fluid Mech.
,
413
, pp.
1
47
.10.1017/S0022112000008284
2.
Smyth
,
W.
,
Moum
,
J.
, and
Caldwell
,
D.
,
2001
, “
The Efficiency of Mixing in Turbulent Patches: Inferences From Direct Simulations and Microstructure Observations
,”
J. Phys. Oceanogr.
,
31
(
8
), pp.
1969
1992
.10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
3.
Pham
,
H. T.
,
Sarkar
,
S.
, and
Brucker
,
K. A.
,
2009
, “
Dynamics of a Stratified Shear Layer Above a Region of Uniform Stratification
,”
J. Fluid Mech.
,
630
, pp.
191
223
.10.1017/S0022112009006478
4.
Pham
,
H. T.
, and
Sarkar
,
S.
,
2014
, “
Large Eddy Simulations of a Stratified Shear Layer
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060913
.10.1115/1.4026416
5.
Brucker
,
K. A.
, and
Sarkar
,
S.
,
2007
, “
Evolution of an Initially Turbulent Stratified Shear Layer
,”
Phys. Fluids
,
19
(
10
), p.
105105
.10.1063/1.2756581
6.
Mellor
,
G. L.
, and
Yamada
,
T.
,
1982
, “
Development of a Turbulence Closure Model for Geophysical Fluid Problems
,”
Rev. Geophys.
,
20
(
4
), pp.
851
875
.10.1029/RG020i004p00851
7.
Wilcox
,
D.
,
2006
, “
Reynolds Averaging
,”
Turbulence Modeling for CFD, Third Edition
,
DCW Industries
,
La Cañada, CA
, pp.
34
38
.
8.
Panda
,
J.
, and
Warrior
,
H.
,
2018
, “
A Representation Theory-Based Model for the Rapid Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081101
.
9.
Bluestein
,
A. M.
,
Venters
,
R.
,
Bohl
,
D.
,
Helenbrook
,
B. T.
, and
Ahmadi
,
G.
,
2019
, “
Turbulent Flow Through a Ducted Elbow and Plugged Tee Geometry: An Experimental and Numerical Study
,”
ASME J. Fluids Eng.
,
141
(
8
), p. 081101.10.1115/1.4042256
10.
Javadi
,
A.
,
Bosioc
,
A.
,
Nilsson
,
H.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2016
, “
Experimental and Numerical Investigation of the Precessing Helical Vortex in a Conical Diffuser, With Rotor–Stator Interaction
,”
ASME J. Fluids Eng.
,
138
(
8
), p. 081106.10.1115/1.4033416
11.
Kunz
,
R. F.
, and
Lakshminarayana
,
B.
,
1992
, “
Three-Dimensional Navier-Stokes Computation of Turbomachinery Flows Using an Explicit Numerical Procedure and a Coupled k-ε Turbulence Model
,”
ASME J. Turbomach.
, 114(3), pp. 627–642.10.1115/1.2929187
12.
Kunz
,
R. F.
, and
Lakshminarayana
,
B.
,
1992
, “
Stability of Explicit Navier-Stokes Procedures Using k-ε and k-ε/Algebraic Reynolds Stress Turbulence Models
,”
J. Comput. Phys.
,
103
(
1
), pp.
141
159
.10.1016/0021-9991(92)90330-2
13.
Poroseva
,
S. V.
,
2014
, “
The Effect of a Pressure-Containing Correlation Model on Near-Wall Flow Simulations With Reynolds Stress Transport Models
,”
ASME J. Fluids Eng.
,
136
(
6
), p. 060909.10.1115/1.4025936
14.
Štefan
,
D.
,
Rudolf
,
P.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2017
, “
Proper Orthogonal Decomposition of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p. 081101.10.1115/1.4036244
15.
Liu
,
X.
, and
Katz
,
J.
,
2018
, “
Pressure–Rate-of-Strain, Pressure Diffusion, and Velocity–Pressure-Gradient Tensor Measurements in a Cavity Flow
,”
AIAA J.
,
56
(
10
), pp.
3897
3914
.10.2514/1.J056168
16.
Hanjalić
,
K.
, and
Launder
,
B.
,
2011
,
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
,
Cambridge University Press
, Cambridge, UK.
17.
Jakkala
,
S. G.
, and
Vengadesan
,
S.
,
2022
, “
Study on the Applicability of URANS, LES and Hybrid LES/RANS Models for Prediction of Hydrodynamics of Cyclone Separator
,”
ASME J. Fluids Eng.
,
144
(
3
), p. 031501.10.1115/1.4052050
18.
Bush
,
R. H.
,
Chyczewski
,
T. S.
,
Duraisamy
,
K.
,
Eisfeld
,
B.
,
Rumsey
,
C. L.
, and
Smith
,
B. R.
,
2019
, “
Recommendations for Future Efforts in Rans Modeling and Simulation
,”
AIAA
Paper No. 2019-0317.10.2514/6.2019-0317
19.
Sommer
,
T.
,
So
,
R.
, and
Zhang
,
J.
,
1997
, “
Modeling Nonequilibrium and History Effects of Homogeneous Turbulence in a Stably Stratified Medium
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
29
37
.10.1016/S0142-727X(96)00140-3
20.
Eisfeld
,
B.
,
2021
, “
Characteristics of Incompressible Free Shear Flows and Implications for Turbulence Modeling
,”
AIAA J.
,
59
(
1
), pp.
180
195
.10.2514/1.J059654
21.
Panda
,
J.
,
Warrior
,
H.
,
Maity
,
S.
,
Mitra
,
A.
, and
Sasmal
,
K.
,
2017
, “
An Improved Model Including Length Scale Anisotropy for the Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
139
(
4
), p. 044503.10.1115/1.4035467
22.
Van Der Poel
,
E. P.
,
Ostilla-Mónico
,
R.
,
Donners
,
J.
, and
Verzicco
,
R.
,
2015
, “
A Pencil Distributed Finite Difference Code for Strongly Turbulent Wall-Bounded Flows
,”
Comput. Fluids
,
116
, pp.
10
16
.10.1016/j.compfluid.2015.04.007
23.
Kunz
,
R.
,
Yu
,
W.-S.
,
Antal
,
S.
, and
Ettorre
,
S.
,
2001
, “
An Unstructured Two-Fluid Method Based on the Coupled Phasic Exchange Algorithm
,”
AIAA
Paper No. 2001–2672.10.2514/6.2001-2672
24.
Clift
,
S. S.
, and
Forsyth
,
P. A.
,
1994
, “
Linear and Non-Linear Iterative Methods for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
18
(
3
), pp.
229
256
.10.1002/fld.1650180302
25.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
26.
Rhie
,
C.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
27.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.10.1017/S0022112091000101
28.
Launder
,
B.
,
1975
, “
On the Effects of a Gravitational Field on the Turbulent Transport of Heat and Momentum
,”
J. Fluid Mech.
,
67
(
3
), pp.
569
581
.10.1017/S002211207500047X
29.
Gibson
,
M.
, and
Launder
,
B.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
30.
Shir
,
C.
,
1973
, “
A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer
,”
J. Atmos. Sci.
,
30
(
7
), pp.
1327
1339
.10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;2
31.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
2634
2649
.10.1063/1.1692845
32.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
33.
Haren
,
L. V.
,
1993
, “
Etude théorique
et modélisation de la turbulence en présence d'ondes internes,” Ph.D. thesis,
Ecole Centrale de Lyon, Ecully, France
.
34.
Spencer
,
B.
, and
Jones
,
B.
,
1971
, “
Statistical Investigation of Pressure and Velocity Fields in the Turbulent Two-Stream Mixing Layers
,”
AIAA Paper No. 71-613.
35.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1990
, “
Development of a Two-Stream Mixing Layer From Tripped and Untripped Boundary Layers
,”
AIAA J.
,
28
(
12
), pp.
2034
2042
.10.2514/3.10519
36.
Rogers
,
M. M.
, and
Moser
,
R. D.
,
1994
, “
Direct Simulation of a Self-Similar Turbulent Mixing Layer
,”
Phys. Fluids
,
6
(
2
), pp.
903
923
.10.1063/1.868325
37.
Pantano
,
C.
, and
Sarkar
,
S.
,
2002
, “
A Study of Compressibility Effects in the High-Speed Turbulent Shear Layer Using Direct Simulation
,”
J. Fluid Mech.
,
451
, pp.
329
371
.10.1017/S0022112001006978
38.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
39.
Saddoughi
,
S. G.
, and
Veeravalli
,
S. V.
,
1994
, “
Local Isotropy in Turbulent Boundary Layers at High Reynolds Number
,”
J. Fluid Mech.
,
268
, pp.
333
372
.10.1017/S0022112094001370
You do not currently have access to this content.