Abstract

Flow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using direct numerical simulation (DNS) and large eddy simulation (LES), the ability of sublayer-resolved Reynolds-averaged Navier–Stokes (RANS) to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the d-type roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case: a low Reynolds number k–ϵ model, the Menter k–ω SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.

References

1.
Anderson
,
W.
,
Li
,
Q.
, and
Bou-Zeid
,
E.
,
2015
, “
Numerical Simulation of Flow Over Urban-Like Topographies and Evaluation of Turbulence Temporal Attributes
,”
J. Turbul.
,
16
(
9
), pp.
809
831
.10.1080/14685248.2015.1031241
2.
Giometto
,
M.
,
Christen
,
A.
,
Meneveau
,
C.
,
Fang
,
J.
,
Krafczyk
,
M.
, and
Parlange
,
M.
,
2016
, “
Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface
,”
Boundary-Layer Meteorol.
,
160
(
3
), pp.
425
452
.10.1007/s10546-016-0157-6
3.
Bons
,
J.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.10.1115/1.1400115
4.
Nikuradse
,
J.
,
1937
, “
Law of Flow in Rough Pipes
,”
NACA
,
Washington, DC
, Report No. 1292.
5.
Moody
,
L.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
681
.http://www.ipt.ntnu.no/~asheim/TPG4135/Moody.pdf
6.
Schultz
,
M.
, and
Flack
,
K.
,
2003
, “
Turbulent Boundary Layers Over Surfaces Smoothed by Sanding
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
863
870
.10.1115/1.1598992
7.
Jimenez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
173
196
.10.1146/annurev.fluid.36.050802.122103
8.
Coleman
,
H.
,
Hodge
,
B.
, and
Taylor
,
R.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.10.1115/1.3242406
9.
van Rij
,
J.
,
Belnap
,
B.
, and
Ligrani
,
P.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.10.1115/1.1486222
10.
Bons
,
J.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
11.
Flack
,
K.
, and
Schultz
,
M.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
12.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlic
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121201
.10.1115/1.4037280
13.
Stimpson
,
C.
,
Snyder
,
J.
,
Thole
,
K.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.10.1115/1.4032167
14.
Kirsch
,
K.
, and
Thole
,
K.
,
2018
, “
Numerical Optimization, Characterization, and Experimental Investigation of Additively Manufactured Communicating Microchannels
,”
ASME J. Turbomach.
,
140
(
11
), p.
111003
.10.1115/1.4041494
15.
McClain
,
S.
,
Hanson
,
D.
,
Cinnamon
,
E.
,
Snyder
,
J.
,
Kunz
,
R.
, and
Thole
,
K.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.10.1115/1.4050389
16.
Yang
,
X.
, and
Griffin
,
K.
,
2021
, “
Grid-Point and Time-Step Requirements for Direct Numerical Simulation and Large-Eddy Simulation
,”
Phys. Fluids
,
33
(
1
), p.
015108
.10.1063/5.0036515
17.
Akins
,
R.
,
Peterka
,
J.
, and
Cermak
,
K.
,
1977
, “
Mean Force and Moment Coefficients for Buildings in Turbulent Boundary Layers
,”
J. Wind Eng. Ind. Aerodyn.
,
2
(
3
), pp.
195
209
.10.1016/0167-6105(77)90022-8
18.
Lim
,
H.
,
Thomas
,
T.
, and
Castro
,
I.
,
2009
, “
Flow Around a Cube in a Turbulent Boundary Layer: LES and Experiment
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
2
), pp.
96
109
.10.1016/j.jweia.2009.01.001
19.
Rodi
,
W.
,
1997
, “
Comparison of LES and RANS Calculations of the Flow Around Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
69–71
, pp.
55
75
.10.1016/S0167-6105(97)00147-5
20.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2010
, “
Numerical Simulation of Dispersion Around an Isolated Cubic Building: Model Evaluation of RANS and LES
,”
Build. Environ.
,
45
(
10
), pp.
2231
2239
.10.1016/j.buildenv.2010.04.004
21.
Cheng
,
H.
,
Hayden
,
P.
,
Robins
,
A.
, and
Castro
,
I.
,
2007
, “
Flow Over Cube Arrays of Different Packing Densities
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
8
), pp.
715
740
.10.1016/j.jweia.2007.01.004
22.
Castro
,
I.
,
Cheng
,
H.
, and
Reynolds
,
R.
,
2006
, “
Turbulence Over Urban-Type Roughness: Deductions From Wind Tunnel Measurements
,”
Boundary-Layer Meteorol.
,
118
(
1
), pp.
109
131
.10.1007/s10546-005-5747-7
23.
Coceal
,
O.
,
Thomas
,
T.
,
Castro
,
I.
, and
Belcher
,
S.
,
2006
, “
Mean Flow and Turbulence Statistics Over Groups of Urban-Like Cubical Obstacles
,”
Boundary-Layer Meteorol.
,
121
(
3
), pp.
491
519
.10.1007/s10546-006-9076-2
24.
Leonardi
,
S.
, and
Castro
,
I.
,
2010
, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.10.1017/S002211200999423X
25.
Xu
,
H.
,
Altland
,
S.
,
Yang
,
X.
, and
Kunz
,
K.
,
2021
, “
Flow Over Closely Packed Cubical Roughness
,”
J. Fluid Mech.
,
920
, pp.
1
24
.10.1017/jfm.2021.456
26.
Inagaki
,
A.
,
Castillo
,
M.
,
Yamashita
,
Y.
,
Kanda
,
M.
, and
Takimoto
,
H.
,
2012
, “
Large-Eddy Simulation of Coherent Flow Structures Within a Cubical Canopy
,”
Boundary-Layer Meteorol.
,
142
(
2
), pp.
207
222
.10.1007/s10546-011-9671-8
27.
Kono
,
T.
,
Tamura
,
T.
, and
Ashie
,
Y.
,
2010
, “
Numerical Investigations of Mean Winds Within Canopies of Regularly Arrayed Cubical Buildings Under Neutral Stability Conditions
,”
Boundary-Layer Meteorol.
,
134
(
1
), pp.
131
155
.10.1007/s10546-009-9434-y
28.
Kanda
,
M.
,
Moriwaki
,
R.
, and
Kasamatsu
,
F.
,
2004
, “
Large-Eddy Simulation of Turbulent Organized Structure Within and Above Explicitly Resolved Cube Arrays
,”
Boundary-Layer Meteorol.
,
112
(
2
), pp.
343
368
.10.1023/B:BOUN.0000027909.40439.7c
29.
Yang
,
X. I. A.
, and
Meneveau
,
C.
,
2016
, “
Large Eddy Simulations and Parameterisation of Roughness Element Orientation and Flow Direction Effects in Rough Wall Boundary Layers
,”
J. Turbul.
,
17
(
11
), pp.
1072
1085
.10.1080/14685248.2016.1215604
30.
Yang
,
X.
,
Xu
,
H.
,
Huang
,
X.
, and
Ge
,
M.
,
2019
, “
Drag Force on Sparsely Packed Cube Arrays
,”
J. Fluid Mech.
,
880
, pp.
992
1019
.10.1017/jfm.2019.726
31.
Yang
,
X.
,
Sadique
,
J.
,
Mittal
,
M.
, and
Meneveau
,
C.
,
2016
, “
Exponential Roughness Layer and Analytical Model for Turbulent Boundary Layer Flow Over Rectangular-Prism Roughness Elements
,”
J. Fluid Mech.
,
789
, pp.
127
165
.10.1017/jfm.2015.687
32.
Li
,
Q.
,
Bou-Zeid
,
E.
,
Anderson
,
W.
,
Grimmond
,
S.
, and
Hultmark
,
M.
,
2016
, “
Quality and Reliability of Les of Convective Scalar Transfer at High Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
102
, pp.
959
970
.10.1016/j.ijheatmasstransfer.2016.06.093
33.
Li
,
Q.
, and
Bou-Zeid
,
E.
,
2019
, “
Contrasts Between Momentum and Scalar Transport Over Very Rough Surfaces
,”
J. Fluid Mech.
,
880
, pp.
32
58
.10.1017/jfm.2019.687
34.
Xie
,
Z.
, and
Castro
,
I.
,
2006
, “
LES and RANS for Turbulent Flow Over Arrays of Wall-Mounted Obstacles
,”
Flow Turbul. Combust.
,
76
(
3
), pp.
291
312
.10.1007/s10494-006-9018-6
35.
Cheng
,
Y.
,
Lien
,
F.
,
Yee
,
E.
, and
Sinclair
,
R.
,
2003
, “
A Comparison of Large Eddy Simulations With a Standard k–ϵ Reynolds-Averaged Navier–Stokes Model for the Prediction of a Fully Developed Turbulent Flow Over a Matrix of Cubes
,”
J. Wind Eng. Ind. Aerodyn
,.,
91
(
11
), pp.
1301
1328
.10.1016/j.jweia.2003.08.001
36.
Santiago
,
J. L.
,
Coceal
,
O.
,
Martilli
,
A.
, and
Belcher
,
S.
,
2008
, “
Variation of the Sectional Drag Coefficient of a Group of Buildings With Packing Density
,”
Boundary-Layer Meteorol.
,
128
(
3
), pp.
445
457
.10.1007/s10546-008-9294-x
37.
Raupach
,
M.
,
1992
, “
Drag and Drag Partition on Rough Surfaces
,”
Boundary-Layer Meteorol.
,
60
(
4
), pp.
375
325
.10.1007/BF00155203
38.
Yang
,
X.
, and
Ge
,
M.
,
2021
, “
Revisiting Raupach's Flow-Sheltering Paradigm
,”
Boundary-Layer Meteorol.
,
179
(
2
), pp.
313
323
.10.1007/s10546-020-00597-8
39.
Siemens Industries Digital Software
, 2019, “
Star CCM+ v 2019.2 User Manual
,” Siemens.
40.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
41.
Lien
,
F.
,
Chen
,
W.
, and
Leschziner
,
M.
,
1996
, “
Low Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations
,”
Eng. Turbul. Modell. Exp.
,
3
, pp.
91
100
.10.1016/B978-0-444-82463-9.50015-0
42.
Launder
,
B.
, and
Shima
,
N.
,
1989
, “
Second-Moment Closure for the Near-Wall Sublayer: Development and Application
,”
AIAA J.
,
27
(
10
), pp.
1319
1325
.10.2514/3.10267
43.
Gibson
,
M.
, and
Launder
,
B.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
44.
Rodi
,
W.
,
1991
, “
Experience With Two-Layer Models Combining the k-ϵ Model With a One-Equation Model Near the Wall
,”
AIAA
Paper No. 91-0216.10.2514/6.1991-216
45.
Xie
,
Z. T.
, and
Fuka
,
V.
,
2018
, “
A Note on Spatial Averaging and Shear Stresses Within Urban Canopies
,”
Boundary-Layer Meteorol.
,
167
(
1
), pp.
171
179
.10.1007/s10546-017-0321-7
46.
Kuwata
,
Y.
, and
Suga
,
K.
,
2013
, “
Modelling Turbulence Around and Inside Porous Media Based on the Second Moment Closure
,”
Int. J. Heat Fluid Flows
,
43
, pp.
35
51
.10.1016/j.ijheatfluidflow.2013.03.001
47.
Aupoix
,
B.
,
2016
, “
Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031205
.10.1115/1.4031558
48.
Taylor
,
R.
,
Coleman
,
H.
, and
Hodge
,
B.
,
1985
, “
Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
251
257
.10.1115/1.3242469
49.
Kato
,
M.
, and
Launder
,
B.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, pp.
1
6
.
You do not currently have access to this content.