Abstract

This paper details a numerical investigation conducted to systematically evaluate the effects of aerodynamic Weber number, in the range from 68 to 136, on spray characteristics and gaseous fluid dynamics when liquid jets are injected in high-temperature air crossflow. The momentum flux ratio and air temperature for all the cases studied in this research effort are 9 and 573 K, respectively. The computations are conducted using an Eulerian–Lagrangian framework, where the gas phase is modeled by the compressible form of the Navier–Stokes equations and the liquid phase is treated in the Lagrangian frame with appropriate models to account for jet injection and breakup phenomena. A modified version of two-way coupling, which takes into account the finite size of the dispersed phase, is used to account for the exchange of mass, momentum, energy and species between the two phases. Turbulence closure is achieved using the large eddy simulation technique. As a first step, the framework is validated against measurements for non-vaporizing and vaporizing conditions—our results agree well with experimental data. Next, three computations in the range of Weber numbers mentioned above are conducted—the effect of Weber number is quantified in terms of the spatiotemporal evolution of the mass fraction of the vaporized liquid, detailed distributions of droplet sizes, their velocities, and volumetric fluxes. It is found that with an increase in the Weber number, the droplet sizes and the penetration depth monotonically decreased. As a result, at higher Weber number conditions, the vaporized liquid in the domain increases due to the overall enhancement in the effective surface area of the liquid phase.

References

1.
Khare
,
P.
,
2014
,
Breakup of Liquid Droplets
,
Georgia Institute of Technology
, Atlanta, GA.
2.
Khare
,
P.
,
Ma
,
D.
,
Chen
,
X.
, and
Yang
,
V.
,
2012
, “
Phenomenology of Secondary Breakup of Newtonian Liquid Droplets
,”
AIAA
Paper No. 2012–0171.10.2514/6.2012-171
3.
Faeth
,
G.
,
2002
, “
Dynamics of Secondary Drop Breakup—A Rate Controlling Process in Dense Sprays
,”
Zaragoza
,
9
, p.
11
.https://ilasseurope.org/ICLASS/ilass2002/papers/201.pdf
4.
Khare
,
P.
, and
Yang
,
V.
,
2015
, “
Newtonian and Non-Newtonian Liquid Droplet Breakup: Child Droplet Statistics
,”
Proc. 13th International Conference on Liquid Atomization and Spray Systems, ICLASS
, Tainan, Taiwan, Aug. 23–27, pp.
1
8
.
5.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
,
1999
, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,” Atomization and Sprays,
9
(
3
), pp.
291
312
.
6.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,” AIAA J.,
42
(
12
), pp.
2529
2540
.
7.
Vich
,
G.
, and
Ledoux
,
M.
,
1997
, “
Investigation of a Liquid Jet in a Subsonic Cross-Flow
,”
Int. J. Fluid Mech. Res.
,
24
(
1–3
), pp.
1
12
.10.1615/InterJFluidMechRes.v24.i1-3.10
8.
Wu
,
P.-K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,” J. Propul. Power,
13
(
1
), pp.
64
73
.
9.
Madabhushi
,
R. K.
,
Leong
,
M. Y.
, and
Hautman
,
D. J.
,
2004
, “
Simulation of the Break-Up of a Liquid Jet in Crossflow at Atmospheric Conditions
,”
ASME
Paper No. GT2004-54093.10.1115/GT2004-54093
10.
Stenzler
,
J. N.
,
Lee
,
J. G.
,
Santavicca
,
D. A.
, and
Lee
,
W.
,
2006
, “
Penetration of Liquid Jets in a Crossflow
,” Atomization and Sprays,
16
(
8
), pp.
887
906
.
11.
Song
,
J.
,
Cary Cain
,
C.
, and
Guen Lee
,
J.
,
2015
, “
Liquid Jets in Subsonic Air Crossflow at Elevated Pressure
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p. 041502.10.1115/1.4028565
12.
Lubarsky
,
E.
,
Shcherbik
,
D.
,
Bibik
,
A.
,
Gopala
,
Y.
, and
Zinn
,
B. T.
,
2012
, “
Fuel Jet in Cross Flow - Experimental Study of Spray Characteristics,
Advanced Fluid Dynamics
, H. Woo Oh, ed., IntechOpen, Rijeka, Croatia.10.5772/26045
13.
Leong
,
M. Y.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2001
, “
Effect of Ambient Pressure on an Airblast Spray Injected Into a Crossflow
,”
J. Propul. Power
,
17
(
5
), pp.
1076
1084
.10.2514/2.5846
14.
Hassa
,
C.
, and
Becker
,
J.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,” Atomization and Sprays,
12
(
1–3
), pp.
49
67
.
15.
Kamin
,
M.
, and
Khare
,
P.
,
2019
, “
Liquid Jet in Crossflow: Effect of Momentum Flux Ratio on Spray and Vaporization Characteristics
,”
ASME
Paper No. GT2019-91972.10.1115/GT2019-91972
16.
Amighi
,
A.
, and
Ashgriz
,
N.
,
2019
, “
Global Droplet Size in Liquid Jet in a High-Temperature and High-Pressure Crossflow
,”
AIAA J.
,
57
(
3
), pp.
1260
1274
.10.2514/1.J056496
17.
Bellofiore
,
A.
,
Cavaliere
,
A.
, and
Ragucci
,
R.
,
2007
, “
Air Density Effect on the Atomization of Liquid Jets in Crossflow
,”
Combust. Sci. Technol.
,
179
(
1–2
), pp.
319
342
.10.1080/00102200600809563
18.
Allison
,
P. M.
,
McManus
,
T. A.
, and
Sutton
,
J. A.
,
2016
, “
Quantitative Fuel Vapor/Air Mixing Imaging in Droplet/Gas Regions of an Evaporating Spray Flow Using Filtered Rayleigh Scattering
,”
Opt. Lett.
,
41
(
6
), pp.
1074
1077
.10.1364/OL.41.001074
19.
Oh
,
J.
,
Lee
,
J. G.
, and
Lee
,
W.
,
2013
, “
Vaporization of a Liquid Hexanes Jet in Cross Flow
,”
Int. J. Multiphase Flow
,
57
, pp.
151
158
.10.1016/j.ijmultiphaseflow.2013.08.002
20.
Bravo
,
L. G.
,
Kim
,
D.
,
Ham
,
F.
, and
Kerner
,
K. A.
,
2018
, “
High Fidelity Simulations of Primary Breakup and Vaporization of Liquid Jet in Cross Flow (JICF)
,” 2018 Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Cincinnati, OH, July 9–11, Paper No.
2018-4683
.10.2514/6.2018-4683
21.
Yoo
,
Y.-L.
,
Han
,
D.-H.
,
Hong
,
J.-S.
, and
Sung
,
H.-G.
,
2017
, “
A Large Eddy Simulation of the Breakup and Atomization of a Liquid Jet Into a Cross Turbulent Flow at Various Spray Conditions
,”
Int. J. Heat Mass Transfer
,
112
, pp.
97
112
.10.1016/j.ijheatmasstransfer.2017.04.064
22.
Erlebacher
,
G.
,
Hussaini
,
M. Y.
,
Speziale
,
C. G.
, and
Zang
,
T. A.
,
1992
, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Fluid Mech.
,
238
, pp.
155
185
.10.1017/S0022112092001678
23.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1993
, “
A Dynamic Mixed Subgrid‐Scale Model and Its Application to Turbulent Recirculating Flows
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
12
), pp.
3186
3196
.10.1063/1.858675
24.
Khare
,
P.
,
Wang
,
S.
, and
Yang
,
V.
,
2015
, “
Modeling of Finite-Size Droplets and Particles in Multiphase Flows
,”
Chin. J. Aeronautics
,
28
(
4
), pp.
974
982
.10.1016/j.cja.2015.05.004
25.
Thomas
,
P.
,
1992
, “
On the Influence of the Basset History Force on the Motion of a Particle Through a Fluid
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
9
), pp.
2090
2093
.10.1063/1.858379
26.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2012
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
27.
Putnam
,
A.
,
1961
, “
Integratable Form of Droplet Drag Coefficient
,”
ARS J.
,
31
(
10
), pp.
1467
1468
.10.2514/8.5825
28.
Faeth
,
G.
,
1983
, “
Evaporation and Combustion of Sprays
,”
Prog. Energy Combust. Sci.
,
9
(
1–2
), pp.
1
76
.10.1016/0360-1285(83)90005-9
29.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.
30.
Liu
,
H. G.
, Khare, P., Sung, H.G. and Yang, V., 2016, “A Large-Eddy-Simulation Study of Combustion Dynamics of Bluff-Body Stabilized Flames,”
Combust. Sci. Technol.
, 188(6), pp. 924–952
.10.1080/00102202.2015.1136296
31.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.10.4271/872089
32.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.10.1016/0301-9322(94)00069-V
33.
Pope
,
S. B.
,
2001
,
Turbulent Flows
,
IOP Publishing
.
34.
Tambe
,
S.
,
Jeng
,
S.-M.
,
Mongia
,
H.
, and
Hsiao
,
G.
,
2005
, “
Liquid Jets in Subsonic Crossflow
,”
AIAA
Paper No. 2005–731.https://www.researchgate.net/publication/271445407_Liquid_Jets_in_Subsonic_Crossflow
35.
Panão
,
M. O.
,
Moita
,
A. S.
, and
Moreira
,
A. L.
,
2020
, “
On the Statistical Characterization of Sprays
,”
Appl. Sci.
,
10
(
17
), p.
6122
.10.3390/app10176122
36.
Sinha
,
A.
,
Surya Prakash
,
R.
,
Madan Mohan
,
A.
, and
Ravikrishna
,
R. V.
,
2016
, “
Experimental Studies on Evaporation of Fuel Droplets Under Forced Convection Using Spray in Crossflow Methodology
,”
Fuel
,
164
, pp.
374
385
.10.1016/j.fuel.2015.09.088
You do not currently have access to this content.