Abstract

Axial fans with a small hub-to-tip diameter ratio (HTR) are widely used in industry, especially for cooling and ventilation purposes. The optimization of their aerodynamic performance is important, for which the vortex distribution method is well-established for axial fans with medium to high HTR. However, only a few studies have focused on small HTR fans. For such fans, downstream backflow regions are often present near the hub. The vortex distribution (polynomial in spanwise coordinate) and the HTR have been determined by maximizing the total-to-static efficiency of a baseline axial fan with a small HTR. For free vortex designs, analytical expressions for the maximum total-to-static efficiency and the optimal HTR have been formulated. By combining the vortex distributions thus obtained with a suitable choice for the spanwise lift coefficient distribution, fan blade designs have been established. The effects of different vortex distributions on the aerodynamic performance have been investigated, employing a computational fluids dynamics (CFD) simulation strategy that has been validated for the baseline axial fan. The current CFD results show that the free and the polynomial vortex distribution designs satisfy the desired pressure rise, with significantly improved total-to-static and total-to-total efficiency (maximum improvement by 3.9% and 4.6% points, respectively). For the free vortex design with larger HTR, neither flow separation nor backflow is observed. For the other designs at the design flow rate, only flow separation near the hub is found. Backflow is observed only for the designs with smaller HTR.

References

1.
Eck
,
B.
,
1973
,
Fans: Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans
,
Pergamon Press
, Oxford, UK.
2.
Vad
,
J.
,
Kwedikha
,
A. R.
, and
Jaberg
,
H.
,
2004
, “
Influence of Blade Sweep on the Energetic Behavior of Axial Flow Turbomachinery Rotors at Design Flow Rate
,”
ASME
Paper No. GT2004-53544.10.1115/GT2004-53544
3.
Vad
,
J.
,
2008
, “
Aerodynamic Effects of Blade Sweep and Skew in Low-Speed Axial Flow Rotors at the Design Flow Rate: An Overview
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
222
(
1
), pp.
69
85
.10.1243/09576509JPE471
4.
Beiler
,
M. G.
, and
Carolus
,
T. H.
,
1999
, “
Computation and Measurement of the Flow in Axial Flow Fans With Skewed Blades
,”
ASME J. Turbomach.
,
121
(
1
), pp.
59
66
.10.1115/1.2841234
5.
Sörensen
,
D.
, and
Sörensen
,
J.
,
2000
, “
Toward Improved Rotor-Only Axial Fans-Part I: A Numerically Efficient Aerodynamic Model for Arbitrary Vortex Flow
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
318
323
.10.1115/1.483275
6.
Sörensen
,
D. N.
,
Thompson
,
M. C.
, and
Sörensen
,
J. N.
,
2000
, “
Toward Improved Rotor-Only Axial Fans-Part II: Design Optimization for Maximum Efficiency
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
324
329
.10.1115/1.483260
7.
Wang
,
J.
, and
Kruyt
,
N. P.
,
2020
, “
CFD Simulations of Aerodynamic Performance of Low-Pressure Axial Fans With Small Hub-to-Tip Diameter Ratio
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
091202
.10.1115/1.4047120
8.
Wang
,
J.
, and
Kruyt
,
N. P.
,
2022
, “
Effects of Sweep, Dihedral and Skew on Aerodynamic Performance of Low-Pressure Axial Fans With Small Hub-to-Tip Diameter Ratio
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011203
.10.1115/1.4051542
9.
Castegnaro
,
S.
,
2018
, “
Aerodynamic Design of Low-Speed Axial-Flow Fans: A Historical Overview
,”
Designs
,
2
(
3
), p.
20
.10.3390/designs2030020
10.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen Für Strömungsmaschinen
,”
BWK
,
6
(
10
), pp. S.337–340.
11.
Pelz
,
P. F.
, and
Metzler
,
M.
,
2012
, “
Optimization of Power-Specific Investment Costs for Small Hydropower
,”
17th International Seminar on Hydropower Plants
, Vienna, Austria, Nov., pp.
21
23
.
12.
Epple
,
P.
,
Durst
,
F.
, and
Delgado
,
A.
,
2011
, “
A Theoretical Derivation of the Cordier Diagram for Turbomachines
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
225
(
2
), pp.
354
368
.10.1243/09544062JMES2285
13.
Wallis
,
R. A.
,
1961
,
Axial Flow Fans: Design and Practice
,
Academic Press
, New York.
14.
Downie
,
R. J.
,
Thompson
,
M. C.
, and
Wallis
,
R. A.
,
1993
, “
An Engineering Approach to Blade Designs for Low to Medium Pressure Rise Rotor-Only Axial Fans
,”
Exp. Therm. Fluid Sci.
,
6
(
4
), pp.
376
401
.10.1016/0894-1777(93)90016-C
15.
Dixon
,
S. L.
,
1966
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth Heinemann
, London, UK.
16.
Carolus
,
T.
,
2003
,
Ventilatoren: Aerodynamischer Entwurf, Schallvorhersage, Konstruktion (in German)
,
Springer Verlag, Berlin, German
.
17.
Ruden
,
P.
,
1944
, “
Investigation of Single Stage Axial Fans
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Report No. 1062.
18.
Castegnaro
,
S.
,
Masi
,
M.
, and
Lazzaretto
,
A.
,
2017
, “
Preliminary Experimental Assessment of the Performance of Rotor-Only Axial Fans Designed With Different Vortex Criteria
,” 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, European Turbomachinery Society, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-055
.https://www.researchgate.net/publication/318116542_Preliminary_Experimental_Assessment_of_the_Performance_of_Rotor-Only_Axial_Fans_Designed_with_Different_Vortex_Criteria
19.
Masi
,
M.
,
Castegnaro
,
S.
, and
Lazzaretto
,
A.
,
2016
, “
A Criterion for the Preliminary Design of High-Efficiency Tube-Axial Fans
,”
ASME
Paper No. GT2016-56960.10.1115/GT2016-56960
20.
Masi
,
M.
, and
Lazzaretto
,
A.
,
2019
, “
A New Practical Approach to the Design of Industrial Axial Fans: Tube-Axial Fans With Very Low Hub-to-Tip Ratio
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101003
.10.1115/1.4044206
21.
Bamberger
,
K.
, and
Carolus
,
T.
,
2015
, “
Achievable Total-to-Static Efficiencies of Low-Pressure Axial Fans
,”
Proceedings of the Fan 2015 Conference
, Lyon, France, Apr. 15–17, Paper No. 22.
22.
Bamberger
,
K.
, and
Carolus
,
T.
,
2020
, “
Efficiency Limits of Fans
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
5
), pp.
739
748
.10.1177/0957650919876838
23.
Bamberger
,
K.
, and
Carolus
,
T.
,
2015
, “
Design Guidelines for Low Pressure Axial Fans Based on CFD-Trained Meta-Models
,”
Proceedings European Turbomachinery Conference, Madrid, Spain, Mar. 23–27, Paper No. ETC2015-175
.
24.
Bamberger
,
K.
, and
Carolus
,
T.
,
2014
, “
Performance Prediction of Axial Fans by CFD-Trained Meta-Models
,”
ASME
Paper No. GT2014-26877.10.1115/GT2014-26877
25.
Strscheletzky
,
M.
,
1959
, “
Gleichgewichtsformen Der Rotationssymmetrischen Strömungen Mit Konstantem Drall in Geraden, Zylindrischen Rotationshohlräumen (in German)
,”
Voith Forsch. Konstr.
,
5
, p.
1
.
26.
Marcinowski
,
H.
,
1959
, “
Optimalprobleme Bei Axialventilatoren (in German)
,”
Voith Forsch. Konstr.
,
5
, Aufsatz 1.
27.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
, New York.
28.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
In Low Reynolds Number Aerodynamics. Lecture Notes in Engineering
, Vol.
54
,
Springer
, Berlin, German, pp.
1
12
.
29.
Carolus
,
T.
, and
Starzmann
,
R.
,
2011
, “
An Aerodynamic Design Methodology for Low Pressure Axial Fans With Integrated Airfoil Polar Prediction
,”
ASME
Paper No. GT2011-45243.10.1115/GT2011-45243
30.
Vad
,
J.
,
2012
, “
Incorporation of Forward Blade Sweep in Preliminary Controlled Vortex Design of Axial Flow Rotors
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
226
(
4
), pp.
462
478
.10.1177/0957650912443445
31.
Horlock
,
J. H.
,
1966
,
Axial Flow Turbines: Fluid Mechanics and Thermodynamics
,
Krieger Publishing Company
, FL.
32.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution – a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
33.
Kruyt
,
N. P.
,
Pennings
,
P.
, and
Faasen
,
R.
,
2014
, “
Optimisation of Efficiency of Axial Fans
,”
12th European Fluid Machinery Congress: Proceedings 12th European Fluid Machinery Congress
,
Woodhead Publishing
, Cambridge, UK, pp.
13
20
.
34.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aérospatiale
,
1
, pp.
5
21
.
35.
Drela
,
M.
, and
Giles
,
M. B.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.10.2514/3.9789
36.
Youngren
,
H.
, and
Drela
,
M.
,
1991
, “
Viscous/Inviscid Method for Preliminary Design of Transonic Cascades
,”
27th Joint Propulsion Conference
, Sacramento, CA, June 24–26, p.
2364
.
37.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Group
, London, UK.
You do not currently have access to this content.