Abstract

The Borexino detector at Gran Sasso National Laboratories (INFN) has obtained extraordinary achievements for solar neutrino and geoneutrino physics during its lifetime. More recently, Borexino has provided the first experimental evidence of the subdominant CNO solar neutrino flux, thanks to an outstanding low background level obtained by means of intense purification campaigns and a continuous improvement of the detector thermal stabilization over the years. In particular, this impressive thermal steadiness has led to a progressive mitigation of the internal convective currents which are responsible for the continuous background contamination of the detector sensitive inner volume. To this purpose, numerical analyses are essential to better comprehend the detector fluid dynamics, the background behavior, and are also important to propose effective countermeasures to further reduce natural convection inside the detector. In this framework, the present work investigates the flow characteristics of the liquid scintillator by means of computational fluid dynamics analyses. In particular, a full 3D model of the Borexino inner vessel is considered in the simulations, addressing the complex nature of the natural convective currents under consideration both in transient and stationary conditions. The calculated flow pattern has been adopted to predict the transport behavior of 210Po, that is fundamental for the independent constraint of 210Bi, the main background constituent affecting CNO measurement. The convection-diffusion analysis demonstrates the applicability of the adopted methodology showing a good agreement between calculation and experimental data.

References

1.
Borexino Collaboration
,
2018
, “
Comprehensive Measurements pp-Chain Solar Neutrinos
,”
Nature
562
, pp.
505
510
.10.1038/s41586-018-0624-y
2.
Borexino Collaboration
,
2014
, “
Neutrinos From the Primary Proton-Proton Fusion Process in the Sun
,”
Nature
,
512
, pp.
383
386
.10.1038/nature13702
3.
Borexino Collaboration
,
2012
, “
First Evidence of Pep Solar Neutrinos by Direct Detection in Borexino
,”
Phys. Rev. Lett.
,
108,
p.
051302
.10.1103/PhysRevLett.108.051302
4.
Borexino Collaboration
,
2011
, “
Precision Measurement of the 7be Solar Neutrino Interaction Rate in Borexino
,”
Phys. Rev. Lett.
,
107,
p.
141302
.10.1103/PhysRevLett.107.141302
5.
Borexino Collaboration
,
2010
, “
Measurement of the Solar 8b Neutrino Rate With a Liquid Scintillator Target and 3 Mev Energy Threshold in the Borexino Detector
,”
Phys. Rev. D
,
82,
p.
033006
.10.1103/PhysRevD.82.033006
6.
Borexino Collaboration
,
2015
, “
Spectroscopy of Geo-Neutrinos From 2056 Days of Borexino Data
,”
Phys. Rev. D
,
92
p.
031101
.10.1103/PhysRevD.92.031101
7.
Borexino Collaboration
,
2015
, “
Comprehensive Geoneutrino Analysis With Borexino
,”
Phys. Rev. D
,
101
, p.
012009
.10.1103/PhysRevD.101.012009
8.
Borexino Collaboration
,
2020
, “
Experimental Evidence of Neutrinos Produced in the Cno Fusion Cycle in the Sun
,”
Nature
,
587
, pp.
577
582
.10.1038/s41586-020-2934-0
9.
Benziger
,
J.
,
2014
, “
The Borexino Purification System
,”
Internat. J. Mod. Phys. A
,
29
(
16
), p.
1442002
.10.1142/S0217751X14420020
10.
Borexino Collaboration
,
2012
, “
Borexino Calibrations: Hardware, Methods, and Results
,”
J. Instrum.
,
7
, p.
10018
.
11.
Di Marcello
,
V.
,
Bravo-Berguño
,
D.
,
Mereu
,
R.
,
Calaprice
,
F.
,
Di Giacinto
,
A.
,
Di Ludovico
,
A.
,
Ianni
,
A.
,
Ianni
,
A.
,
Rossi
,
N.
, and
Pietrofaccia
,
L.
,
2020
, “
Fluid-Dynamics and Transport of 210po in the Scintillator Borexino Detector: A Numerical Analysis
,”
Nucl. Instrum. Methods A
,
964
, p. 163801.10.1016/j.nima.2020.163801
12.
Bravo-Berguño
,
D.
,
Mereu
,
R.
,
Cavalcante
,
P.
,
Carlini
,
M.
,
Ianni
,
A.
,
Goretti
,
A.
,
Gabriele
,
F.
,
Wright
,
T.
,
Yokley
,
Z.
,
Vogelaar
,
R. B.
,
Calaprice
,
F.
, and
Inzoli
,
F.
,
2018
, “
The Borexino Thermal Monitoring and Management System and Simulations of the Fluid-Dynamics of the Borexino Detector Under Asymmetrical, Changing Boundary Conditions
,”
Nucl. Instrum. Methods A
,
885
, pp.
38
53
.10.1016/j.nima.2017.12.047
13.
Yin
,
S. H.
,
Powe
,
R. E.
,
Scanlan
,
J. A.
, and
Bishop
,
E. H.
,
1973
, “
Natural Convection Flow Patterns in Spherical Annuli
,”
Int. J. Heat Mass Transfer
,
16
(
9
), pp.
1785
1795
.10.1016/0017-9310(73)90168-3
14.
Garg
,
V.
,
1992
, “
Natural Convection Between Concentric Spheres
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1935
1945
.10.1016/0017-9310(92)90196-Y
15.
Kuehn
,
T.
, and
Goldstein
,
R.
,
1978
, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
Int. J. Heat Mass Transfer
,
100
(
4
), pp.
635
640
.10.1115/1.3450869
16.
Mograbi
,
E.
, and
Bar-Ziv
,
E.
,
2007
, “
Initial Stage of Natural Convection Over a Hot Aerosol Sphere
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
695
701
.10.1115/1.2734195
17.
Belabid
,
J.
,
2020
, “
Impact of Wall Waviness on the Convection Patterns Inside a Horizontal Porous Annulus
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071304
.10.1115/1.4046481
18.
Tumin
,
A.
,
2003
, “
The Spatial Stability of Natural Convection Flow on Inclined Plates
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
428
437
.10.1115/1.1566047
19.
Aus der Wiesche
,
S.
, and
Helcig
,
C.
,
2020
, “
Stagnation Flow and Heat Transfer From a Finite Disk Situated Perpendicular to a Uniform Stream
,”
ASME J. Fluids Eng.
,
142
(
3
) p.
031108
.10.1115/1.4045862
20.
Kahwaji
,
G. Y.
,
2021
, “
Heat Transfer Advancement From Horizontal Cylinder Using Passive Shroud-Chimney Configuration: Experimental and Numerical Analysis
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041204
.10.1115/1.4049243
21.
Isover
,
S.-G.
,
2015
, “
U Tech Roll 2.0 Datasheet
,”Alu1/V1/V2, Tour Saint-Gobain, 92096 La Defense Cedex, France.
22.
Vinyoles
,
N.
,
Serenelli
,
A. M.
,
Villante
,
F. L.
,
Basu
,
S.
,
Bergström
,
J.
,
Gonzalez-Garcia
,
M. C.
,
Maltoni
,
M.
,
Peña-Garay
,
C.
, and
Song
,
N.
,
2017
, “
A New Generation of Standard Solar Models
,”
Astrophys. J
,
835
(
2
), p.
202
.10.3847/1538-4357/835/2/202
23.
Villante
,
F. L.
,
Ianni
,
A.
,
Lombardi
,
F.
,
Pagliaroli
,
G.
, and
Vissani
,
F.
,
2011
, “
A Step Toward Cno Solar Neutrino Detection in Liquid Scintillators
,”
Phys. Rev. B
,
701
(
3
), pp.
336
341
.10.1016/j.physletb.2011.05.068
24.
Borexino Collaboration
,
2020
, “
Sensitivity to Neutrinos From the Solar Cno Cycle in Borexino
,”
Eur. Phys. J. C
,
80
(
1091
).10.1140/epjc/s10052-020-7859-0
25.
ANSYS, Inc.
,
2010
,
ANSYS Fluent User'S Guide
,
ANSYS, Inc., 275 Technology Drive
,
Canonsburg, PA
.
26.
Malalasekera
,
W.
, and
Versteeg
,
H.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice Hall
.
27.
Cruickshank-Miller
,
C.
,
1924
, “
The Stokes-Einstein Law for Diffusion in Solution
,”
Proc. R. Soc. Lond. A
,
106
, pp.
724
749
.
28.
Borexino Collaboration
,
2014
, “
Final Results of Borexino Phase-i on Low-Energy Solar Neutrino Spectroscopy
,”
Phys. Rev. D
,
89
, p.
112007
.10.1103/PhysRevD.89.112007
29.
Benziger
,
J.
,
Cadonati
,
L.
,
Calaprice
,
F.
,
de Haas
,
E.
,
Fernholz
,
R.
,
Ford
,
R.
,
Galbiati
,
C.
,
Goretti
,
A.
,
Harding
,
E.
,
Ianni
,
A.
,
Ianni
,
A.
,
Kidner
,
S.
,
Leung
,
M.
,
Loeser
,
F.
,
McCarty
,
K.
,
Nelson
,
A.
,
Parsells
,
R.
,
Pocar
,
A.
,
Shutt
,
T.
,
Sonnenschein
,
A.
, and
Vogelaar
,
R. B.
,
2007
, “
The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment
,”
Nucl. Instrum. Methods A
,
582
(
2
), pp.
509
534
.10.1016/j.nima.2007.08.176
30.
Hoecker
,
A.
, Speckmayer, P., Stelzer, J., Therhaag, J., von Toerne, E., Voss, H.,
2009
, “
Tmva - Toolkit for Multivariate Data Analysis
,” Technical Report, CERN-OPEN-2007-007, v5 https://arxiv.org/abs/physics/0703039
31.
Borexino Collaboration, 2022, “
Comprehensive bi-po-210 Link Analysis in Borexino
” (in preparation).
You do not currently have access to this content.