Abstract

To accurately capture the behaviors of cavitation and reveal the unsteady cavitating flow mechanism, a condensate pump inducer is numerically analyzed in a separate numerical experiment with large eddy simulation (LES) at critical cavitation number σind,c under the design point. Based on the new Omega vortex identification method, the correlation between the flow structures and cavities is clearly illustrated. Besides, the pressure fluctuations around the inducer are analyzed. Special emphasis is put on the analysis of the interactions between the cavities, turbulent fluctuations, and vortical flow structures. The Omega vortex identification method could give an overall picture of the whole cavitating flow structures to present a clear correlation between the vortices and cavities. The results show that the shear cavitation dominates the cavitation characteristics under the design point. The pure rigid rotation region mainly concentrates at the edge of the cavities while the other sheet-like cavities near the casing walls are characterized by strong turbulence fluctuations. Besides, based on the analysis of the correlation between the cavities and flow structures, the rotating cavitation under the design point may mainly be attributed to the interaction between the tip leakage vortex cavitation and the next blade.

Reference

1.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2003
, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
J. Fluids Eng. Trans. ASME
,
125
(
2
), pp.
293
301
.10.1115/1.1539872
2.
Zhu
,
Z. C.
,
Chen
,
Y.
,
Jin
,
Q. M.
, and
Huang
,
D. H.
,
2002
, “
Study on High-Speed Centrifugal-Regenerative Pump With an Inducer
,”
Chin. J. Chem. Eng.
,
10
(
2
), pp.
137
141
.10.1002/1522-2640(200204)74:4
3.
Hong
,
S. S.
,
Kim
,
D. J.
,
Kim
,
J. S.
,
Choi
,
C. H.
, and
Kim
,
J.
,
2013
, “
Study on Inducer and Impeller of a Centrifugal Pump for a Rocket Engine Turbopump
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
227
(
2
), pp.
311
319
.10.1177/0954406212449939
4.
Guo
,
X. M.
,
Zhu
,
Z. C.
,
Cui
,
B. L.
, and
Shi
,
G. P.
,
2016
, “
Effects of the Number of Inducer Blades on the Anti-Cavitation Characteristics and External Performance of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
7
), pp.
3173
3181
.10.1007/s12206-016-0510-1
5.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
6.
Kim, D., Sung, H. J., Choi, C., and Kim, J., 2017, “Cavitation Instabilities During the Development Testing of a Liquid Oxygen Pump,”
J. Propul. Power
, 33(1), pp.
187
192
.10.2514/1.B35988
7.
Kimura
,
T.
,
Yoshida
,
Y.
,
Hashimoto
,
T.
, and
Shimagaki
,
M.
,
2008
, “
Numerical Simulation for Vortex Structure in a Turbopump Inducer: Close Relationship With Appearance of Cavitation Instabilities
,”
J. Fluids Eng. Trans. ASME
,
130
(
5
), p.
0511041
.10.1115/1.2911678
8.
Tsujimoto
,
Y.
,
Horiguchi
,
H.
, and
Qiao
,
X.
,
2005
, “
Backflow From Inducer and Its Dynamics
,”
ASME
Paper No. FEDSM2005-77381.10.1115/FEDSM2005-77381
9.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng
,.,
115
(
1
), pp.
135
141
.10.1115/1.2910095
10.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propuls. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
11.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
,
Hashimoto
,
T.
, and
Geai
,
P.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
J. Fluids Eng. Trans. ASME
,
119
(
4
), pp.
742
742
.10.1115/1.2819491
12.
Aeschlimann
,
V.
,
Barre
,
S.
, and
Djeridi
,
H.
,
2011
, “
Velocity Field Analysis in an Experimental Cavitating Mixing Layer
,”
Phys. Fluids
,
23
(
5
), p.
055105
.10.1063/1.3592327
13.
Imamura
,
H.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Kikuchi
,
M.
,
2003
, “
Suppression of Cavitating Flow in Inducer by J-Groove
,”
Proceedings of the Fifth International Symposium on Cavitation (CAV2003)
, Osaka, Japan, Aug., pp.
1
6
.
14.
Lettieri
,
C.
,
Spakovszky
,
Z.
,
Jackson
,
D.
, and
Schwille
,
J.
,
2018
, “
Characterization of Cavitation Instabilities in a Four-Bladed Turbopump Inducer
,”
J. Propul. Power
,
34
(
2
), pp.
510
520
.10.2514/1.B36317
15.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
J. Fluids Eng. Trans. ASME
,
134
(
2
), p.
021302
.10.1115/1.4005903
16.
Chen
,
Y.
,
Chen
,
X.
,
Li
,
J.
,
Gong
,
Z.
, and
Lu
,
C.
,
2017
, “
Large Eddy Simulation and Investigation on the Flow Structure of the Cascading Cavitation Shedding Regime Around 3D Twisted Hydrofoil
,”
Ocean Eng.
,
129
, pp.
1
19
.10.1016/j.oceaneng.2016.11.012
17.
Chen
,
Y.
,
Li
,
J.
,
Gong
,
Z.
,
Chen
,
X.
, and
Lu
,
C.
,
2019
, “
Large Eddy Simulation and Investigation on the Laminar-Turbulent Transition and Turbulence-Cavitation Interaction in the Cavitating Flow Around Hydrofoil
,”
Int. J. Multiph. Flow
,
112
, pp.
300
322
.10.1016/j.ijmultiphaseflow.2018.10.012
18.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Xu
,
H.
,
2012
, “
Partially-Averaged Navier-Stokes Method With Modified k-ε Model for Cavitating Flow Around a Marine Propeller in a Non-Uniform Wake
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6582
6588
.10.1016/j.ijheatmasstransfer.2012.06.065
19.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
3rd International Symposium on Cavitation CAV1998
, Grenoble, France, Vol.
26
, Apr., pp.
1
8
.
20.
Huang
,
B.
,
Young
,
Y. L.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p. 071301.10.1115/1.4023650
21.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
22.
Kim
,
J.
, and
Song
,
S. J.
,
2019
, “
Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091103
.10.1115/1.4042884
23.
Long
,
X.
,
Cheng
,
H.
,
Ji
,
B.
,
Arndt
,
R. E.
, and
Peng
,
X.
,
2018
, “
Large Eddy Simulation and Euler–Lagrangian Coupling Investigation of the Transient Cavitating Turbulent Flow Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
100
, pp.
41
56
.10.1016/j.ijmultiphaseflow.2017.12.002
24.
Gavaises
,
M.
,
Villa
,
F.
,
Koukouvinis
,
P.
,
Marengo
,
M.
, and
Franc
,
J. P.
,
2015
, “
Visualisation and Les Simulation of Cavitation Cloud Formation and Collapse in an Axisymmetric Geometry
,”
Int. J. Multiph. Flow
,
68
, pp.
14
26
.10.1016/j.ijmultiphaseflow.2014.09.008
25.
Egerer
,
C. P.
,
Schmidt
,
S. J.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2016
, “
Efficient Implicit LES Method for the Simulation of Turbulent Cavitating Flows
,”
J. Comput. Phys.
,
316
, pp.
453
469
.10.1016/j.jcp.2016.04.021
26.
Ji
,
B.
,
Long
,
Y.
,
Long
,
X. P.
,
Qian
,
Z. D.
, and
Zhou
,
J. J.
,
2017
, “
Large Eddy Simulation of Turbulent Attached Cavitating Flow With Special Emphasis on Large Scale Structures of the Hydrofoil Wake and Turbulence-Cavitation Interactions
,”
J. Hydrodyn.
,
29
(
1
), pp.
27
39
.10.1016/S1001-6058(16)60715-1
27.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
28.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Vol. 152, Yokohama, Japan, May 30–June 3, Paper No. 152.
29.
Zore
,
K.
,
Sasanapuri
,
B.
,
Parkhi
,
G.
, and
Varghese
,
A.
,
2019
, “
Ansys Mosaic Poly-Hexcore Mesh for High-Lift Aircraft Configuration
,”
21st AeSI Annual CFD Symposium
, Bangalore, India, Aug. 8–9, pp.
1
11
.
30.
Benard
,
P.
,
Balarac
,
G.
,
Moureau
,
V.
,
Dobrzynski
,
C.
,
Lartigue
,
G.
, and
d'Angelo
,
Y.
,
2016
, “
Mesh Adaptation for Large‐Eddy Simulations in Complex Geometries
,”
Int. J. Numer. Methods Fluids
,
81
(
12
), pp.
719
740
.10.1002/fld.4204
31.
Tao
,
X. I. N. G.
,
2015
, “
A General Framework for Verification and Validation of Large Eddy Simulations
,”
J. Hydrodyn.
,
27
(
2
), pp.
163
175
.10.1016/S1001-6058(15)60469-3
32.
Celik
,
I.
,
Klein
,
M.
,
Freitag
,
M.
, and
Janicka
,
J.
,
2006
, “
Assessment Measures for URANS/DES/LES: An Overview With Applications
,”
J. Turbul.
,
7
(48), pp. 1–27.10.1080/14685240600794379
33.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
34.
Cheng
,
H. Y.
,
Ji
,
B.
,
Long
,
X. P.
,
Huai
,
W. X.
, and
Farhat
,
M.
,
2021
, “
A Review of Cavitation in Tip-Leakage Flow and Its Control
,”
J. Hydrodyn
,.,
33
(
2
), pp.
226
242
.10.1007/s42241-021-0022-z
35.
Decaix
,
J.
,
Dreyer
,
M.
,
Balarac
,
G.
,
Farhat
,
M.
, and
Münch
,
C.
,
2018
, “
RANS Computations of a Confined Cavitating Tip-Leakage Vortex
,”
Eur. J. Mech. B/Fluids
,
67
, pp.
198
210
.10.1016/j.euromechflu.2017.09.004
36.
Gaggero
,
S.
,
Tani
,
G.
,
Viviani
,
M.
, and
Conti
,
F.
,
2014
, “
A Study on the Numerical Prediction of Propellers Cavitating Tip Vortex
,”
Ocean Eng.
,
92
, pp.
137
161
.10.1016/j.oceaneng.2014.09.042
37.
Batchelor
,
G. K.
,
1951
, “
Pressure Fluctuations in Isotropic Turbulence
,”
Math. Proc. Cambridge Philos. Soc.
,
47
(
2
), pp.
359
374
.10.1017/S0305004100026712
38.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2006
,
Fundamentals of Cavitation
,
Springer Science & Business Media
, Berlin.
39.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
40.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three‐Dimensional Flow Fields
,”
Phys. Fluids A Fluid Dyn.
,
2
(
5
), pp.
765
777
.10.1063/1.857730
41.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.10.1146/annurev.fl.23.010191.003125
42.
Wang
,
Y.
,
Yang
,
Y.
,
Yang
,
G.
, and
Liu
,
C.
,
2017
, “
DNS Study on Vortex and Vorticity in Late Boundary Layer Transition
,”
Commun. Comput. Phys.
,
22
(
2
), pp.
441
459
.10.4208/cicp.OA-2016-0183
43.
Liu
,
C.
,
Gao
,
Y. S.
,
Dong
,
X. R.
,
Wang
,
Y. Q.
,
Liu
,
J. M.
,
Zhang
,
Y. N.
,
Cai
,
X. S.
, and
Gui
,
N.
,
2019
, “
Third Generation of Vortex Identification Methods: Omega and Liutex/Rortex Based Systems
,”
J. Hydrodyn.
,
31
(
2
), pp.
205
223
.10.1007/s42241-019-0022-4
44.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
45.
Dong
,
X.
,
Gao
,
Y.
, and
Liu
,
C.
,
2019
, “
New Normalized Rortex/Vortex Identification Method
,”
Phys. Fluids
,
31
(
1
), p.
011701
.10.1063/1.5066016
46.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI Inc., Oxford University Press
,
Oxford, UK
.
47.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2016
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.10.1115/1.2969426
You do not currently have access to this content.