Abstract

The state characterization of cavitation is significant not only for preventing catastrophic faults in industrial applications but also for keeping equipment stealthiness for military purposes. Many works concerning mechanical diagnostics search for modulation frequencies. However, this diagnosis strategy has so far been hindered in cavitation detection of fluid machinery. This results from that the first-order and second-order cyclostationary noise in the monitoring signal likely have the same modulation frequencies as the cyclostationary components caused by cavitation. To deal with this dilemma, the present paper proposes a novel strategy—cavitation characterization by carrier distribution. First, a cyclostationary model of a single cavitating blade is established. On this basis, the mathematical connection between spectral correlation, carrier power spectral density, and modulation quantities is elaborated. Finally, attached cavity and unattached cavity are identified qualitatively from carrier distribution by combining cavitation mechanism. The first paper is also a prelude to the second paper where cavitation quantitative characterization is achieved by modulation intensity indicators.

References

1.
Wu
,
K.
,
Xing
,
Y.
,
Chu
,
N.
,
Wu
,
P.
,
Cao
,
L.
, and
Wu
,
D.
,
2020
, “
A Carrier Wave Extraction Method for Cavitation Characterization Based on Time Synchronous Average and Time-Frequency Analysis
,”
J. Sound Vib.
,
489
, p.
115682
.10.1016/j.jsv.2020.115682
2.
Arndt
,
R. E. A.
,
Ellis
,
C. R.
, and
Paul
,
S.
,
1995
, “
Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
498
504
.10.1115/1.2817290
3.
De Giorgi
,
M. G.
,
Fontanarosa
,
D.
, and
Ficarella
,
A.
,
2020
, “
Active Control of Unsteady Cavitating Flows Over Hydrofoil
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111201
.10.1115/1.4047798
4.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.10.1115/1.2819499
5.
Che
,
B.
,
Chu
,
N.
,
Schmidt
,
S. J.
,
Cao
,
L.
,
Likhachev
,
D.
, and
Wu
,
D.
,
2019
, “
Control Effect of Micro Vortex Generators on Leading Edge of Attached Cavitation
,”
Phys. Fluids
,
31
(
4
), p.
44102
.10.1063/1.5087700
6.
Che
,
B.
,
Chu
,
N.
,
Cao
,
L.
,
Schmidt
,
S. J.
,
Likhachev
,
D.
, and
Wu
,
D.
,
2019
, “
Control Effect of Micro Vortex Generators on Attached Cavitation Instability
,”
Phys. Fluids
,
31
(
6
), p.
64102
.10.1063/1.5099089
7.
Qian
,
Z.
,
Zhang
,
S.
, and
Xue
,
L.
,
2022
, “
Numerical Study of Mitigating Cloud Cavitation Shedding Using Biomimetic Protuberant Stripes
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
91201
.10.1115/1.4053680
8.
Desheng
,
Z.
,
Qiang
,
Z.
,
Qi
,
G.
,
Guangjian
,
Z.
,
Bin
,
X.
,
Linlin
,
G.
, and
van Esch
,
B. P. M.
,
2022
, “
Experimental and Numerical Investigation on the Transient Cavitating Flows in a Mixed Flow Pump With Different Number of Blades at Startup
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
51204
..10.1115/1.4052863
9.
Arabnejad
,
M. H.
,
Svennberg
,
U.
, and
Bensow
,
R. E
,
2022
, “
Numerical Assessment of Cavitation Erosion Risk in a Commercial Water-Jet Pump
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051201
.10.1115/1.4052634
10.
Stutz
,
B.
, and
Legoupil
,
S.
,
2003
, “
X-Ray Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
35
(
2
), pp.
130
138
.10.1007/s00348-003-0622-0
11.
Yan
,
Z.
,
Liu
,
J.
,
Chen
,
B.
,
Cheng
,
X.
, and
Yang
,
J.
,
2015
, “
Fluid Cavitation Detection Method With Phase Demodulation of Ultrasonic Signal
,”
Appl. Acoust.
,
87
, pp.
198
204
.10.1016/j.apacoust.2014.07.007
12.
Lelong
,
A.
,
Guiffant
,
P.
, and
André Astolfi
,
J.
,
2017
, “
An Experimental Analysis of the Structural Response of Flexible Lightweight Hydrofoils in Cavitating Flow
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021116
.10.1115/1.4037990
13.
Lee
,
J.
, and
Seo
,
J.
,
2013
, “
Application of Spectral Kurtosis to the Detection of Tip Vortex Cavitation Noise in Marine Propeller
,”
Mech. Syst. Signal Pr.
,
40
(
1
), pp.
222
236
.10.1016/j.ymssp.2013.04.002
14.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Pr.
,
20
(
4
), pp.
983
1007
.10.1016/j.ymssp.2004.08.006
15.
Čudina
,
M.
,
2003
, “
Detection of Cavitation Phenomenon in a Centrifugal Pump Using Audible Sound
,”
Mech. Syst. Signal Pr.
,
17
(
6
), pp.
1335
1347
.10.1006/mssp.2002.1514
16.
He
,
Y.
, and
Liu
,
Y.
,
2011
, “
Experimental Research Into Time–Frequency Characteristics of Cavitation Noise Using Wavelet Scalogram
,”
Appl. Acoust.
,
72
(
10
), pp.
721
731
.10.1016/j.apacoust.2011.03.008
17.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng
,.,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
18.
Chen
,
W.
,
Qiao
,
W.
,
Duan
,
W.
, and
Wei
,
Z.
,
2021
, “
Experimental Study of Airfoil Instability Noise With Wavy Leading Edges
,”
Appl. Acoust.
,
172
, p.
107671
.10.1016/j.apacoust.2020.107671
19.
Pendar
,
M.
,
Páscoa
,
J. C.
, and
March
,
8.
,
2022
, “
Numerical Investigation of Plasma Actuator Effects on Flow Control Over a Three-Dimensional Airfoil With a Sinusoidal Leading Edge
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
81208
.10.1115/1.4053847
20.
Wu
,
K.
,
Chu
,
N.
,
Wu
,
D.
, and
Antoni
,
J.
,
2021
, “
The Enkurgram: A Characteristic Frequency Extraction Method for Fluid Machinery Based on Multi-Band Demodulation Strategy
,”
Mech. Syst. Signal Pr.
,
155
, p.
107564
.10.1016/j.ymssp.2020.107564
21.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Signal Pr.
,
35
(
1–2
), pp.
108
126
.10.1016/j.ymssp.2012.09.015
22.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Pr.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
23.
Wang
,
Y.
,
Xiang
,
J.
,
Markert
,
R.
, and
Liang
,
M.
,
2016
, “
Spectral Kurtosis for Fault Detection, Diagnosis and Prognostics of Rotating Machines: A Review With Applications
,”
Mech. Syst. Signal Pr.
,
66–67
, pp.
679
698
.10.1016/j.ymssp.2015.04.039
24.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal Pr.
,
23
(
4
), pp.
987
1036
.10.1016/j.ymssp.2008.10.010
25.
Antoni
,
J.
,
Xin
,
G.
, and
Hamzaoui
,
N.
,
2017
, “
Fast Computation of the Spectral Correlation
,”
Mech. Syst. Signal Pr.
,
92
, pp.
248
277
.10.1016/j.ymssp.2017.01.011
26.
Gardner
,
W. A.
,
1986
,
Introduction to Random Processes With Applications to Signals and Systems
,
MacMillan
,
New York
, p.
447
.
27.
Gardner
,
W. A.
,
1986
, “
Measurement of Spectral Correlation
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
34
(
5
), pp.
1111
1123
.10.1109/TASSP.1986.1164951
28.
Mauricio
,
A.
, and
Gryllias
,
K.
,
2021
, “
Cyclostationary-Based Multiband Envelope Spectra Extraction for Bearing Diagnostics: The Combined Improved Envelope Spectrum
,”
Mech. Syst. Signal Pr.
,
149
, p.
107150
.10.1016/j.ymssp.2020.107150
29.
Gao
,
Y.
,
Cain
,
T.
, and
Cooper
,
P.
,
2021
, “
Automatic Detection of Underwater Propeller Signals Using Cyclostationarity Analysis
,”
Mech. Syst. Signal Pr.
,
146
, p.
107032
.10.1016/j.ymssp.2020.107032
30.
Lee
,
J.
,
2021
, “
Enhancement of Decomposed Spectral Coherence Using Sparse Nonnegative Matrix Factorization
,”
Mech. Syst. Signal Pr.
,
157
, p.
107747
.10.1016/j.ymssp.2021.107747
31.
Li
,
S.
,
Chu
,
N.
,
Yan
,
P.
,
Wu
,
D.
, and
Antoni
,
J.
,
2019
, “
Cyclostationary Approach to Detect Flow-Induced Effects on Vibration Signals From Centrifugal Pumps
,”
Mech. Syst. Signal Pr.
,
114
, pp.
275
289
.10.1016/j.ymssp.2018.05.027
32.
Borghesani
,
P.
, and
Antoni
,
J.
,
2018
, “
A Faster Algorithm for the Calculation of the Fast Spectral Correlation
,”
Mech. Syst. Signal Pr.
,
111
, pp.
113
118
.10.1016/j.ymssp.2018.03.059
33.
Antoni
,
J.
, and
Hanson
,
D.
,
2012
, “
Detection of Surface Ships From Interception of Cyclostationary Signature With the Cyclic Modulation Coherence
,”
IEEE J. Ocean. Eng.
,
37
(
3
), pp.
478
493
.10.1109/JOE.2012.2195852
34.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
35.
Gavaises
,
M.
,
Villa
,
F.
,
Koukouvinis
,
P.
,
Marengo
,
M.
, and
Franc
,
J.
,
2015
, “
Visualisation and Les Simulation of Cavitation Cloud Formation and Collapse in an Axisymmetric Geometry
,”
Int. J. Multiphase Flow
,
68
, pp.
14
26
.10.1016/j.ijmultiphaseflow.2014.09.008
36.
Ylönen
,
M.
,
Franc
,
J.
,
Miettinen
,
J.
,
Saarenrinne
,
P.
, and
Fivel
,
M.
,
2019
, “
Shedding Frequency in Cavitation Erosion Evolution Tracking
,”
Int. J. Multiphase Flow
,
118
, pp.
141
149
.10.1016/j.ijmultiphaseflow.2019.06.009
37.
Higuchi
,
H.
,
Arndt
,
R. E. A.
, and
Rogers
,
M. F.
,
1989
, “
Characteristics of Tip Vortex Cavitation Noise
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
495
501
.10.1115/1.3243674
38.
Arndt
,
R. E. A.
,
Arakeri
,
V. H.
, and
Higuchi
,
H.
,
1991
, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
,
229
(
-1
), pp.
269
289
.10.1017/S0022112091003026
39.
Pennings
,
P. C.
,
Bosschers
,
J.
,
Westerweel
,
J.
, and
van Terwisga
,
T. J. C.
,
2015
, “
Dynamics of Isolated Vortex Cavitation
,”
J. Fluid Mech.
,
778
, pp.
288
313
.10.1017/jfm.2015.379
40.
Li
,
D.
,
Hallander
,
J.
, and
Johansson
,
T.
,
2018
, “
Predicting Underwater Radiated Noise of a Full Scale Ship With Model Testing and Numerical Methods
,”
Ocean Eng.
,
161
, pp.
121
135
.10.1016/j.oceaneng.2018.03.027
You do not currently have access to this content.