Abstract

In the previous paper, the high potential of the spectral correlation to identify cavity type has been demonstrated. This paper dedicates its efforts to cavity development evaluation and shows how the proposed modulation intensity indicators can achieve this goal. First, the signal model of cavitating impeller is established, and detailed cyclostationary analysis is implemented. Then, modulation intensity indicators—absolute carrier power level (AP), relative carrier power level (RP), and characteristic modulation components ratio (CMCR), are designed to evaluate cavitation degree. The AP proves to be useful in measuring the early developing cavitation, the CMCR is capable of detecting the key turning point from the early developing cavitation to the fully developed cavitation, and the RP can reflect cavitation degree from the view of signal-to-noise ratio (SNR). In summary, these indicators solidly complement each other, thus their combination provides an efficient solution to cavitation characterization. Lastly, the diagnosis strategies of qualitative detection by carrier distribution in Part 1 and quantitative characterization by modulation intensity in Part 2 are promising to be generalized to more scenarios.

References

1.
Desheng
,
Z.
,
Qiang
,
Z.
,
Qi
,
G.
,
Guangjian
,
Z.
,
Bin
,
X.
,
Linlin
,
G.
, and
van Esch
,
B. P. M.
,
2022
, “
Experimental and Numerical Investigation on the Transient Cavitating Flows in a Mixed Flow Pump With Different Number of Blades at Startup
,”
ASME. J. Fluids Eng.
,
144
(
5
), p.
051204
.10.1115/1.4052863
2.
Sun
,
W.
, and
Tan
,
L.
,
2020
, “
Cavitation-Vortex-Pressure Fluctuation Interaction in a Centrifugal Pump Using Bubble Rotation Modified Cavitation Model Under Partial Load
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051206
.10.1115/1.4045615
3.
Cencîc
,
T.
,
Hoĉevar
,
M.
, and
Ŝirok
,
B.
,
2014
, “
Study of Erosive Cavitation Detection in Pump Mode of Pump–Storage Hydropower Plant Prototype
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051301
.10.1115/1.4026476
4.
Jian
,
W.
,
Petkovšek
,
M.
,
Houlin
,
L.
,
Širok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051302
.10.1115/1.4029533
5.
Wu
,
K.
,
Xing
,
Y.
,
Chu
,
N.
,
Wu
,
P.
,
Cao
,
L.
, and
Wu
,
D.
,
2020
, “
A Carrier Wave Extraction Method for Cavitation Characterization Based on Time Synchronous Average and Time-Frequency Analysis
,”
J. Sound Vib.
,
489
, p.
115682
.10.1016/j.jsv.2020.115682
6.
Arabnejad
,
M. H.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2022
, “
Numerical Assessment of Cavitation Erosion Risk in a Commercial Water-Jet Pump
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051201
.10.1115/1.4052634
7.
Antoni
,
J.
, and
Hanson
,
D.
,
2012
, “
Detection of Surface Ships From Interception of Cyclostationary Signature With the Cyclic Modulation Coherence
,”
IEEE J. Ocean. Eng.
,
37
(
3
), pp.
478
493
.10.1109/JOE.2012.2195852
8.
Lee
,
J.
, and
Seo
,
J.
,
2013
, “
Application of Spectral Kurtosis to the Detection of Tip Vortex Cavitation Noise in Marine Propeller
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
222
236
.10.1016/j.ymssp.2013.04.002
9.
Wu
,
K.
,
Chu
,
N.
,
Wu
,
D.
, and
Antoni
,
J.
,
2021
, “
The Enkurgram: A Characteristic Frequency Extraction Method for Fluid Machinery Based on Multi-Band Demodulation Strategy
,”
Mech. Syst. Signal Process.
,
155
, p.
107564
.10.1016/j.ymssp.2020.107564
10.
Zhao
,
G.
,
Cao
,
L.
,
Che
,
B.
,
Wu
,
R.
,
Yang
,
S.
, and
Wu
,
D.
,
2021
, “
Towards the Control of Blade Cavitation in a Waterjet Pump With Inlet Guide Vanes: Passive Control by Obstacles
,”
Ocean Eng.
,
231
, p.
108820
.10.1016/j.oceaneng.2021.108820
11.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.10.1016/j.ymssp.2004.08.006
12.
Čudina
,
M.
,
2003
, “
Detection of Cavitation Phenomenon in a Centrifugal Pump Using Audible Sound
,”
Mech. Syst. Signal Process.
,
17
(
6
), pp.
1335
1347
.10.1006/mssp.2002.1514
13.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng.
,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
14.
Chen
,
W.
,
Qiao
,
W.
,
Duan
,
W.
, and
Wei
,
Z.
,
2021
, “
Experimental Study of Airfoil Instability Noise With Wavy Leading Edges
,”
Appl. Acoust.
,
172
, p.
107671
.10.1016/j.apacoust.2020.107671
15.
Pendar
,
M.
, and
Páscoa
,
J. C.
,
2022
, “
Numerical Investigation of Plasma Actuator Effects on Flow Control Over a Three-Dimensional Airfoil With a Sinusoidal Leading Edge
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
81208
.10.1115/1.4053847
16.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterising Non-Stationary Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
282
307
.10.1016/j.ymssp.2004.09.001
17.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
.10.1016/j.ymssp.2004.09.002
18.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
19.
Moshrefzadeh
,
A.
, and
Fasana
,
A.
,
2018
, “
The Autogram: An Effective Approach for Selecting the Optimal Demodulation Band in Rolling Element Bearings Diagnosis
,”
Mech. Syst. Signal Process.
,
105
, pp.
294
318
.10.1016/j.ymssp.2017.12.009
20.
Mauricio
,
A.
, and
Gryllias
,
K.
,
2021
, “
Cyclostationary-Based Multiband Envelope Spectra Extraction for Bearing Diagnostics: The Combined Improved Envelope Spectrum
,”
Mech. Syst. Signal Process.
,
149
, p.
107150
.10.1016/j.ymssp.2020.107150
21.
Antoni
,
J.
,
Xin
,
G.
, and
Hamzaoui
,
N.
,
2017
, “
Fast Computation of the Spectral Correlation
,”
Mech. Syst. Signal Process.
,
92
, pp.
248
277
.10.1016/j.ymssp.2017.01.011
22.
Gardner
,
W. A.
,
1986
,
Introduction to Random Processes With Applications to Signals and Systems
,
MacMillan
,
New York
, p.
447
.
23.
Gardner
,
W. A.
,
1986
, “
Measurement of Spectral Correlation
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
34
(
5
), pp.
1111
1123
.10.1109/TASSP.1986.1164951
24.
Antoniadis
,
I.
, and
Glossiotis
,
G.
,
2001
, “
Cyclostationary Analysis of Rolling-Element Bearing Vibration Signals
,”
J. Sound Vib.
,
248
(
5
), pp.
829
845
.10.1006/jsvi.2001.3815
25.
Boustany
,
R.
, and
Antoni
,
J.
,
2005
, “
A Subspace Method for the Blind Extraction of a Cyclostationary Source: Application to Rolling Element Bearing Diagnostics
,”
Mech. Syst. Signal Process.
,
19
(
6
), pp.
1245
1259
.10.1016/j.ymssp.2005.08.016
26.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis in Practice
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
597
630
.10.1016/j.ymssp.2006.08.007
27.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions
,”
J. Sound Vib.
,
304
(
3–5
), pp.
497
529
.10.1016/j.jsv.2007.02.029
28.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
987
1036
.10.1016/j.ymssp.2008.10.010
29.
Lee
,
J.
,
2021
, “
Enhancement of Decomposed Spectral Coherence Using Sparse Nonnegative Matrix Factorization
,”
Mech. Syst. Signal Process.
,
157
, p.
107747
.10.1016/j.ymssp.2021.107747
30.
Song
,
Y.
,
Liu
,
J.
,
Cao
,
L.
,
Chu
,
N.
, and
Wu
,
D.
,
2019
, “
Robust Passive Underwater Acoustic Detection Method for Propeller
,”
Appl. Acoust.
,
148
, pp.
151
161
.10.1016/j.apacoust.2018.12.024
31.
Randall
,
R. B.
,
Antoni
,
J.
, and
Chobsaard
,
S.
,
2001
, “
The Relationship Between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
945
962
.10.1006/mssp.2001.1415
32.
Borghesani
,
P.
, and
Antoni
,
J.
,
2018
, “
A Faster Algorithm for the Calculation of the Fast Spectral Correlation
,”
Mech. Syst. Signal Process.
,
111
, pp.
113
118
.10.1016/j.ymssp.2018.03.059
33.
Li
,
S.
,
Chu
,
N.
,
Yan
,
P.
,
Wu
,
D.
, and
Antoni
,
J.
,
2019
, “
Cyclostationary Approach to Detect Flow-Induced Effects on Vibration Signals From Centrifugal Pumps
,”
Mech. Syst. Signal Process.
,
114
, pp.
275
289
.10.1016/j.ymssp.2018.05.027
34.
Song
,
Y.
,
Liu
,
J.
,
Chu
,
N.
,
Wu
,
P.
, and
Wu
,
D.
,
2019
, “
A Novel Demodulation Method for Rotating Machinery Based on Time-Frequency Analysis and Principal Component Analysis
,”
J. Sound Vib.
,
442
, pp.
645
656
.10.1016/j.jsv.2018.11.024
35.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
356
362
.10.1115/1.1457451
You do not currently have access to this content.