Abstract

Air–water and air–water–oil flows were analyzed in a complex channel prototype of a plate and shell heat exchanger (PSHE) with the aid of a fast camera. Air–water flows were characterized before the PSHE inlet port by electrical capacitance tomography (ECT). The effects of inlet pipe flow pattern (bubbly, stratified, or slug) and flow direction (upward or downward) on PSHE air–water flows were investigated. The resultant phase distribution within the PSHE channel was determined by imaging analysis. Instantaneous velocity fields projected on the channel frontal plane were obtained with particle image velocimetry (PIV) for the dispersed phase of bubbly flows. Stratified pipe flow pattern results in PSHE channel segregated flow. The thermal analysis of segregated flow patterns occurring in the hot and cold sides of a PSHE reveals that the countercurrent configuration may present worse heat transfer performance than the parallel one. PSHE multiphase flows are characterized by breakup phenomenon: the mixture among phases is intensified even if stratification occurs at the inlet port. Oil–water–air downward flows are characterized by oil–water emulsion at the channel center and by water and air–water streams at the channel external part. Oil–water–air upward flows are characterized by air–water and oil–water emulsions at the channel center and by the water stream at the channel external part.

References

1.
Lee
,
H.
,
Sadeghianjahromi
,
A.
,
Kuo
,
P.-L.
, and
Wang
,
C.-C.
,
2020
, “
Experimental Investigation of the Thermofluid Characteristics of Shell-and-Plate Heat Exchangers
,”
Energies
,
13
(
20
), p.
5304
.10.3390/en13205304
2.
Buscher
,
S.
,
2021
, “
Two-Phase Pressure Drop and Void Fraction in a Cross-Corrugated Plate Heat Exchanger Channel: Impact of Flow Direction and Gas-Liquid Distribution
,”
Exp. Therm. Fluid Sci.
,
126
, p.
110380
.10.1016/j.expthermflusci.2021.110380
3.
Grabenstein
,
V.
,
Polzin
,
A.-E.
, and
Kabelac
,
S.
,
2017
, “
Experimental Investigation of the Flow Pattern, Pressure Drop and Void Fraction of Two-Phase Flow in the Corrugated Gap of a Plate Heat Exchanger
,”
Int. J. Multiphase Flow
,
91
, pp.
155
169
.10.1016/j.ijmultiphaseflow.2017.01.012
4.
Lee
,
D.
,
Song
,
K. S.
,
Yun
,
S.
, and
Kim
,
Y.
,
2020
, “
Experimental Evaluation of Single- and Two-Phase Pressure Drops Through Inlet and Outlet Ports in a Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
158
, p.
120009
.10.1016/j.ijheatmasstransfer.2020.120009
5.
Tao
,
X.
,
Dahlgren
,
E.
,
Leichsenring
,
M.
, and
Ferreira
,
C. A. I.
,
2020
, “
NH3 Condensation in a Plate Heat Exchanger: Experimental Investigation on Flow Patterns, Heat Transfer and Frictional Pressure Drop
,”
Int. J. Heat Mass Transfer
,
151
, p.
119374
.10.1016/j.ijheatmasstransfer.2020.119374
6.
Wang
,
Q.
,
Li
,
X.
,
Xu
,
C.
,
Yan
,
T.
, and
Li
,
Y.
,
2021
, “
Bubble Recognizing and Tracking in a Plate Heat Exchanger by Using Image Processing and Convolutional Neural Network
,”
Int. J. Multiphase Flow
,
138
, p.
103593
.10.1016/j.ijmultiphaseflow.2021.103593
7.
Zhu
,
X.
, and
Haglind
,
F.
,
2020
, “
Computational Fluid Dynamics Modeling of Liquid–Gas Flow Patterns and Hydraulics in the Cross-Corrugated Channel of a Plate Heat Exchanger
,”
Int. J. Multiphase Flow
,
122
, p.
103163
.10.1016/j.ijmultiphaseflow.2019.103163
8.
Wang
,
K.
,
Wu
,
P.
,
Tang
,
Z.
,
Liu
,
L.
,
Zhao
,
J.
, and
Lin
,
R.
,
2020
, “
Flow Patterns and Pressure Drop in the Shell-and-Plate Heat Exchangers
,”
Int. J. Multiphase Flow
,
129
, p.
103323
.10.1016/j.ijmultiphaseflow.2020.103323
9.
Song
,
K. S.
,
Yun
,
S.
,
Lee
,
D.
,
Kim
,
K.
, and
Kim
,
Y.
,
2020
, “
Evaporation Heat Transfer Characteristics of R-245fa in a Shell and Plate Heat Exchanger for Very-High-Temperature Heat Pumps
,”
Int. J. Heat Mass Transfer
,
151
, p.
119408
.10.1016/j.ijheatmasstransfer.2020.119408
10.
Jo
,
C.
,
Lee
,
D.
,
Chung
,
H. J.
,
Kang
,
Y.
, and
Kim
,
Y.
,
2020
, “
Comparative Evaluation of the Evaporation Heat Transfer Characteristics of a Low-GWP Refrigerant R-1234ze(E) Between Shell-and-Plate and Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
153
, p.
119598
.10.1016/j.ijheatmasstransfer.2020.119598
11.
Kwon
,
O. J.
,
Jung
,
J. H.
, and
Kang
,
Y. T.
,
2020
, “
Development of Experimental Nusselt Number and Friction Factor Correlations for Condensation of R-1233zd(E) in Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
158
, p.
120008
.10.1016/j.ijheatmasstransfer.2020.120008
12.
Beckedorff
,
L.
,
Nieuwenhuizen
,
R.
,
Bolwerk
,
T. M. A. J.
,
Monteiro
,
A. S.
,
de Paiva
,
K. V.
,
Kuerten
,
J. G. M.
,
van der Geld
,
C. W. M.
, and
Oliveira
,
J. L. G.
,
2019
, “
Flow Statistics in Plate and Shell Heat Exchangers Measured With PTV
,”
Int. J. Heat Fluid Flow
,
79
, p.
108461
.10.1016/j.ijheatfluidflow.2019.108461
13.
Beckedorff
,
L.
,
Martins
,
G. S. M.
,
de Paiva
,
K. V.
,
Oliveira
,
A. A. M.
, and
Oliveira
,
J. L. G.
,
2022
, “
Chevron Angle Effect on Plate and Shell Heat Exchangers Measured With Particle Tracking Velocimetry
,”
Heat Transfer Eng.
,
43
, pp.
1
15
.10.1080/01457632.2021.2022302
14.
Rachmawan,
2014
, “
Canny Edge Detection
,” MATLAB Central File Exchange, accessed Mar. 1, 2022, https://www.mathworks.com/matlabcentral/fileexchange/46859-canny-edge-detection
15.
Sundararajan
,
D.
,
2017
,
Digital Image Processing: A Signal Processing and Algorithmic Approach
,
Springer
,
Singapore
.
16.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
(
1
), p.
e30
.http://doi.org/10.5334/jors.bl
17.
Ziegenhein
,
T.
,
Garcon
,
M.
, and
Lucas
,
D.
,
2016
, “
Particle Tracking Using Micro Bubbles in Bubbly Flows
,”
Chem. Eng. Sci.
,
153
, pp.
155
164
.10.1016/j.ces.2016.07.024
18.
Li
,
X.
,
Sun
,
J.
,
Xu
,
C.
,
Li
,
Y.
,
Zhang
,
R.
,
Qian
,
L.
, and
Chen
,
Y.
,
2019
, “
Visualization of Bubble Flow in the Channel of a Dimple-Type Embossing Plate Heat Exchanger Under Different Fluid Inlet/Outlet Ports
,”
Int. J. Heat Mass Transfer
,
145
, p.
118750
.10.1016/j.ijheatmasstransfer.2019.118750
19.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.10.1088/0957-0233/24/4/045302
20.
de Oliveira
,
M. C. K.
, and
Gonçalves
,
M. A.
,
2012
, “
An Effort to Establish Correlations Between Brazilian Crude Oils Properties and Flow Assurance Related Issues
,”
Energy Fuels
,
26
(
9
), pp.
5689
5701
.10.1021/ef300650k
21.
Esteves
,
R. C.
, and
Ferraz
,
H. C.
,
2021
, “
Evaluation of Interfacial Properties Due to the Effect of Dispersing Agents on Brazilian Medium Crude Oil
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
626
, p.
127043
.10.1016/j.colsurfa.2021.127043
22.
Alves
,
D. R.
,
Carneiro
,
J. S. A.
,
Oliveira
,
I. F.
,
Façanha
,
F.
, Jr.
,
Santos
,
A. F.
,
Dariva
,
C.
,
Franceschi
,
E.
, and
Fortuny
,
M.
,
2014
, “
Influence of the Salinity on the Interfacial Properties of a Brazilian Crude Oil–Brine Systems
,”
Fuel
,
118
, pp.
21
26
.10.1016/j.fuel.2013.10.057
23.
Albrecht
,
H.-E.
,
Borys
,
M.
,
Damaschke
,
N.
, and
Tropea
,
C.
,
2003
,
Laser Doppler and Phase Doppler Measurement Techniques
,
Springer
,
Berlin
.
24.
Clift
,
R.
,
Grace
,
K. J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops and Particles
,
Academic Press
,
New York
.
25.
Kakaç
,
S.
,
Shah
,
R. K.
, and
Aung
,
W. T.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
26.
Coleman
,
H.
, and
Steele
,
W.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
27.
Lee
,
D.
,
Kim
,
D.
,
Yun
,
S.
, and
Kim
,
Y.
,
2019
, “
Two-Phase Flow Patterns and Pressure Drop of a Low GWP Refrigerant R-1234ze (E) in a Plate Heat Exchanger Under Adiabatic Conditions
,”
Int. J. Heat Mass Transfer
,
145
, p.
118816
.10.1016/j.ijheatmasstransfer.2019.118816
28.
Martins
,
G. S. M.
,
da Silva
,
R. P. P.
,
Beckedorff
,
L.
,
Monteiro
,
A. S.
,
de Paiva
,
K. V.
, and
Oliveira
,
J. L. G.
,
2020
, “
Fatigue Performance Evaluation of Plate and Shell Heat Exchangers
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104237
.10.1016/j.ijpvp.2020.104237
29.
Obiso
,
D.
,
Schwitalla
,
D. H.
,
Korobeinikov
,
I.
,
Meyer
,
B.
,
Reuter
,
M.
, and
Richter
,
A.
,
2020
, “
Dynamics of Rising Bubbles in a Quiescent Slag Bath With Varying Thermo-Physical Properties
,”
Metall. Mater. Trans. B
,
51
(
6
), pp.
2843
2861
.10.1007/s11663-020-01947-0
30.
Milenkovic
,
R. Z.
,
Sigg
,
B.
, and
Yadigaroglu
,
G.
,
2007
, “
Bubble Clustering and Trapping in Large Vortices. Part 1: Triggered Bubbly Jets Investigated by Phase-Averaging
,”
Int. J. Multiphase Flow
,
33
(
10
), pp.
1088
1110
.10.1016/j.ijmultiphaseflow.2007.05.003
31.
Sene
,
K. J.
,
Hunt
,
J. C. R.
, and
Thomas
,
N. H.
,
1994
, “
The Role of Coherent Structures in Bubble Transport by Turbulent Shear Flows
,”
J. Fluid Mech.
,
259
, pp.
219
240
.10.1017/S0022112094000108
32.
Magnaudet
,
J.
, and
Eames
,
I.
,
2000
, “
The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
659
708
.10.1146/annurev.fluid.32.1.659
33.
Aliseda
,
A.
, and
Lasheras
,
J. C.
,
2011
, “
Preferential Concentration and Rise Velocity Reduction of Bubbles Immersed in a Homogeneous and Isotropic Turbulent Flow
,”
Phys. Fluids
,
23
(
9
), p.
093301
.10.1063/1.3626404
34.
Martin
,
H.
,
1996
, “
A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers
,”
Chem. Eng. Process.
,
35
(
4
), pp.
301
310
.10.1016/0255-2701(95)04129-X
35.
Açikgöz
,
M.
,
França
,
F.
, and
Lahey
,
R. T.
, Jr.
,
1992
, “
An Experimental Study of Three-Phase Flow Regimes
,”
Int. J. Multiphase Flow
,
18
(
3
), pp.
327
336
.10.1016/0301-9322(92)90020-H
You do not currently have access to this content.