Abstract

Due to the ignorance of the effect of the water–vapor interface on the cavitation flow field, the standard k–ε turbulence model (ST model) may overestimate the turbulent viscosity. It is unable to simulate cavitation shedding, especially at small attack angles of a hydrofoil. In the present investigation, a turbulent viscosity correction model is proposed to dampen the turbulent viscosity at the water–vapor interface. Cavitation flow around a NACA0009 truncated hydrofoil with a 2.5 deg angle of attack is used to demonstrate the effect of correction. The results show that the interface effect-based correction model (IE model) can both predict the pressure distribution on the suction surface of the hydrofoil with experimental data and the re-entrance jet in the leading-edge cavitation shedding. The region of the IE model influenced concentrates on the water–vapor interface and intensifies the vortex strength, which directly enhances the formation of a horseshoe vortex. The reduction of turbulent viscosity by the IE model reduces the resistance to the development of a re-entrance jet. The shear stress plays an important role in the shedding of the attached cavity bubble. The increase of shear force in the leading-edge cavitation occurs with the re-entrance of water and the main shear flow concentrates on the middle of the cavity bubble. This paper therefore presents a new method of numerical simulation of cavitation flow in engineering applications.

References

1.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
2.
Fruman
,
D. H.
,
Reboud
,
J. L.
, and
Stutz
,
B.
,
1999
, “
Estimation of Thermal Effects in Cavitation of Thermosensible Liquids
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3195
3204
.10.1016/S0017-9310(99)00005-8
3.
Joussellin
,
F.
,
Courtot
,
Y.
,
Coutier-Delghosa
,
O.
, and
Reboud
,
J.-L.
,
2001
, “
Cavitating Inducer Instabilities: Experimental Analysis and 2D Numerical Simulation of Unsteady Flow in Blade Cascade
,”
Proceedings of Fourth International Symposium on Cavitation
, California Institute of Technology, Pasadena, CA.
4.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
5.
Ganesh
,
H.
,
Makiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.10.1017/jfm.2016.425
6.
Pipp
,
P.
,
Hocevar
,
M.
, and
Dular
,
M.
,
2021
, “
Numerical Insight Into the Kelvin-Helmholtz Instability Appearance in Cavitating Flow
,”
Appl. Sci.-Basel
,
11
(
6
), p.
2644
.10.3390/app11062644
7.
Peng
,
X. X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.10.1016/j.ijmultiphaseflow.2015.10.006
8.
Wu
,
J.
,
Deijlen
,
L.
,
Bhatt
,
A.
,
Ganesh
,
H.
, and
Ceccio
,
S. L.
,
2021
, “
Cavitation Dynamics and Vortex Shedding in the Wake of a Bluff Body
,”
J. Fluid Mech.
,
917
, p. A26.10.1017/jfm.2021.263
9.
Brennen
,
C.
,
1969
, “
A Numerical Solution of Axisymmetric Cavity Flows
,”
J. Fluid Mech.
,
37
(
4
), pp.
671
688
.10.1017/S0022112069000802
10.
Kinnas
,
S. A.
, and
Fine
,
N. E.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
181
.10.1017/S0022112093002071
11.
Lemonnier
,
H.
, and
Rowe
,
A.
,
1988
, “
Another Approach in Modeling Cavitating Flows
,”
J. Fluid Mech.
,
195
(
1
), pp.
557
580
.10.1017/S0022112088002526
12.
Peters
,
A.
, and
el Moctar
,
O.
,
2020
, “
Numerical Assessment of Cavitation-Induced Erosion Using a Multi-Scale Euler–Lagrange Method
,”
J. Fluid Mech.
,
894
(
A19
), pp.
1
54
.10.1017/jfm.2020.273
13.
Bouziad
,
Y. A.
,
2005
, “
Physical Modelling of Leading Edge Cavitation: Computational Methodologies and Application to Hydraulic Machinery
,” Doctor of Science,
École Polytechnique Fédérale De Lausanne
, France.
14.
Peters
,
A.
,
2019
, “
Numerical Modelling and Prediction of Cavitation Erosion Using Euler-Euler and Multi-Scale Euler-Lagrange Methods
,”
Doctors of Engineering, Universität Duisburg-Essen
,
Germany
.
15.
Cheng
,
H.
,
Long
,
X.
,
Ji
,
B.
,
Peng
,
X.
, and
Farhat
,
M.
,
2021
, “
A New Euler-Lagrangian Cavitation Model for Tip-Vortex Cavitation With the Effect of Non-Condensable Gas
,”
Int. J. Multiphase Flow
,
134
, p.
103441
.10.1016/j.ijmultiphaseflow.2020.103441
16.
Wang
,
J.
,
Li
,
H.
,
Guo
,
W.
,
Wang
,
Z.
,
Du
,
T.
,
Wang
,
Y.
,
Abe
,
A.
, and
Huang
,
C.
,
2021
, “
Rayleigh–Taylor Instability of Cylindrical Water Droplet Induced by Laser-Produced Cavitation Bubble
,”
J. Fluid Mech.
,
919
(
A42
), pp.
1
27
.10.1017/jfm.2021.401
17.
Zhou
,
L.
, and
Wang
,
Z.
,
2008
, “
Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG κ-ε Model
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011302
.10.1115/1.2816009
18.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2015
, “
A Numerical Method to Simulate Turbulent Cavitating Flows
,”
Int. J. Multiphase Flow
,
70
, pp.
22
34
.10.1016/j.ijmultiphaseflow.2014.11.009
19.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Two-Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
,
9
(
12
), pp.
3678
3686
.10.1063/1.869505
20.
Melissaris
,
T.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2019
, “
On the Applicability of Cavitation Erosion Risk Models With a URANS Solver
,”
ASME J. Fluids Eng.
,
141
(
10
), p. 101104.10.1115/1.4043169
21.
Huang
,
B.
, and
Wang
,
G. Y.
,
2011
, “
A Modified Density Based Cavitation Model for Time Dependent Turbulent Cavitating Flow Computations
,”
Chin. Sci. Bull.
,
56
(
19
), pp.
1985
1992
.10.1007/s11434-011-4540-x
22.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three‐Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
23.
Mousavi
,
S. M.
, and
Roohi
,
E.
,
2014
, “
Three‐Dimensional Investigation of the Shock Train Structure in a Convergent–Divergent Nozzle
,”
Acta Astronaut.
,
105
(
1
), pp.
117
127
.10.1016/j.actaastro.2014.09.002
24.
Roohi
,
E.
,
Pendar
,
M.-R.
, and
Rahimi
,
A.
,
2016
, “
Simulation of Three-Dimensional Cavitation Behind a Disk Using Various Turbulence and Mass Transfer Models
,”
Appl. Math. Modell.
,
40
(
1
), pp.
542
564
.10.1016/j.apm.2015.06.002
25.
Pendar
,
M.-R.
,
Esmaeilifar
,
E.
, and
Roohi
,
E.
,
2020
, “
LES Study of Unsteady Cavitation Characteristics of a 3-D Hydrofoil With Wavy Leading Edge
,”
Int. J. Multiphase Flow
,
132
, p.
103415
.10.1016/j.ijmultiphaseflow.2020.103415
26.
Mirjalily
,
S. A. A.
,
2021
, “
Lambda Shock Behaviors of Elliptic Supersonic Jets; a Numerical Analysis With Modification of RANS Turbulence Model
,”
Aerosp. Sci. Technol.
,
112
, p.
106613
.10.1016/j.ast.2021.106613
27.
Shyy
,
W.
,
Thakur
,
S.
, and
Wright
,
J.
,
1992
, “
Second-Order Upwind and Central Difference Schemes for Recirculating flow Computation
,”
AIAA J.
,
30
(
4
), pp.
923
932
.10.2514/3.11010
28.
Wu
,
J. Y.
,
Wang
,
G. Y.
, and
Shyy
,
W.
,
2005
, “
Time-Dependent Turbulent Cavitating Flow Computations With Interfacial Transport and Filter-Based Models
,”
Int. J. Numer. Methods Fluids
,
49
(
7
), pp.
739
761
.10.1002/fld.1047
29.
Huang
,
B.
,
Wang
,
G.-y.
, and
Zhao
,
Y.
,
2014
, “
Numerical Simulation Unsteady Cloud Cavitating Flow With a Filter-Based Density Correction Model
,”
J. Hydrodyn.
,
26
(
1
), pp.
26
36
.10.1016/S1001-6058(14)60004-4
30.
Rashidi
,
M.
, and
Banerjee
,
S.
,
1990
, “
The Effect of Boundary Conditions and Shear Rate on Streak Formation and Breakdown in Turbulent Channel Flows
,”
Phys. Fluids A
,
2
(
10
), pp.
1827
1838
.10.1063/1.857656
31.
Li
,
Z.
, and
Jaberi
,
F. A.
,
2009
, “
Turbulence-Interface Interactions in a Two-Fluid Homogeneous Flow
,”
Phys. Fluids
,
21
(
9
), pp.
095102
095114
.10.1063/1.3207860
32.
Barre
,
S.
,
Rolland
,
J.
,
Boitel
,
G.
,
Goncalves
,
E.
, and
Patella
,
R. F.
,
2009
, “
Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,”
Eur. J. Mech. B/Fluids
,
28
(
3
), pp.
444
464
.10.1016/j.euromechflu.2008.09.001
33.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow, Yokohama
, Japan, May 30–June 3, No. 152.
34.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
35.
Julien
,
R.
,
Guillaume
,
B.
,
Stéphane
,
B.
,
Eric
,
G.
, and
Regiane
,
F. P.
,
2006
, “
Experiments and Modelling of Cavitating Flows in Venturi—Part 1: Stable Cavitation
,”
Sixth International Symposium on Cavitation, Wageningen
, The Netherlands, pp.
1
15
.
36.
Dupont
,
P.
,
1991
, “
Etude de la Dynamique D'une Poche de Cavitation Partielle en Vue de la Pr'Ediction de L'Erosion Dans Les Turbomachines Hydrauliques
,” Doctor of Sciences,
Ecole Polytechnique F'ed'erale de Lausanne
, Switzerland.
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
38.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows. Part 1. Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.10.1017/S0022112000002925
39.
Johannes
,
B.
, and
Peter
,
F. P.
,
2012
, “
The Influence of Imposed Strain Rate and Circulation on Bubble and Cloud Dynamics
,”
Proceedings of the International Symposium on Cavitation
, Singapore, pp.
1
8
.
You do not currently have access to this content.