Abstract

A simulative method for quantifying the discharge process of cold gas airbag inflators is presented. The pressure, mass flow and the influences of the flow field are relevant to a robust and predictive airbag deployment. Simulations in this regard are compared and validated with experimental data. It turns out that simulated mean pressures inside the inflator deviate by 5–10% from measured data. A complex and highly turbulent flow field with supersonic and subsonic flow emerges. An influential longitudinal vortex forms in the cold gas inflator, leading to a highly dynamic discharge process. This vortex would not be found with the current state-of-the-art methods, such as the simple tank test or analytical models. It is shown that a simple turbulence model such as the kω shear stress transport predicts the flow field with sufficient accuracy in comparison with the large eddy simulation. Real gas effects must be taken into account inside the high-pressure reservoir, leading to a faster discharge compared to the ideal gas, due to faster moving expansion waves in the reservoir. Real gas effects outside the high-pressure reservoir seem to be negligible. A simplified simulation model was developed that uses only part of the whole cold gas inflator model and serves as a good practical approach for airbag deployment simulations, with less computational effort. Thus, the method presented here can provide high-quality inflow data for airbag deployment simulations.

References

1.
Gonter
,
M.
,
Knoll
,
P.
,
Leschke
,
A.
,
Seiffert
,
U.
, and
Weinert
,
F.
,
2021
,
Fahrzeugsicherheit
,
Springer Vieweg Verlag
, Wiesbaden, Germany, pp.
1073
1160
.
2.
Rieger
,
D.
,
2006
, “
Numerische Modellierung Des Aufblasvorgangs Eines Airbags Und Der Thermochemischen Prozesse im Gasgenerator
,” Ph.D. dissertation,
University of Munich
,
Munich
.
3.
Zeguer
,
T.
,
Feng
,
B.
, and
Coleman
,
D.
,
2008
, “
Gas Dynamic Simulation of Curtain Airbag Deployment Through Interior Trims
,”
LS-DYNA Anwenderforum
, Bamberg, Germany, p.
7
.
4.
Lian
,
W.
,
Olovsson
,
L.
, and
Bhalsod
,
D.
,
2004
, “
Development of CFD Capability for Airbag Out-of-Position Applications
,”
ASME Paper No. HT-FED2004-56044
.10.1115/HT-FED2004-56044
5.
Souli
,
M.
,
Capron
,
N.
, and
Khan
,
U.
,
2005
, “
Fluid Structure Interaction and Airbag ALE for Out of Position
,”
ASME Paper No. PVP2005-71668
.10.1115/PVP2005-71668
6.
Yeh
,
I.
,
Zhou
,
R.
,
Cheng
,
J.
,
Olovsson
,
L.
, and
Wang
,
J.
,
2007
, “
Development and Validation of an ALE-Based Airbag Simulation Methodology
,”
ASME Paper No. FEDSM2007-37024
.10.1115/FEDSM2007-37024
7.
Fokin
,
D.
,
Dessarud
,
E.
, and
Ljungqvist
,
C.
,
2007
, “
Simulation of Curtain Airbag With Arbitrary Eulerian—Lagrangian Method
,”
LS-DYNA Anwenderforum
, Frankenthal, Germany, p.
6
.
8.
Hoffmann
,
J.
,
Freisinger
,
M.
,
Schmehl
,
R.
, and
Lewis
,
M.
,
2007
, “
CFD Analysis of the Flow From an Airbag Inflator Module
,”
International Pyrotechnic Automotive Safety Symposium
, Bordeaux, France, Nov. 27–28.
9.
Schnorr
,
E.
,
Scholz
,
P.
, and
Radespiel
,
R.
,
2022
, “
A Method to Quantify the Supersonic Discharge of Airbag Cold Gas Inflators
,”
Exp. Fluids
,
63
(
11
), p.
177
.10.1007/s00348-022-03521-7
10.
Franquet
,
E.
,
Perrier
,
V.
,
Gibout
,
S.
, and
Bruel
,
P.
,
2015
, “
Free Underexpanded Jets in a Quiescent Medium: A Review
,”
Prog. Aerosp. Sci.
,
77
, pp.
25
53
.10.1016/j.paerosci.2015.06.006
11.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.10.1016/0021-9991(78)90023-2
12.
Siemens
,
2021
, Siemens Digital Industries Software, “
Simcenter STAR-CCM+ User Guide, Version 2021.2
,”
Siemens
,
Plano, TX
.
13.
Wang
,
T.
,
Wang
,
H.
, and
Tang
,
G.
,
2016
, “
Benchmarking the Star-CCM+ Compressible Flow Solver by Simulating Typical Compressible Flow Problems: A Case Study and Comparison
,”
Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems
,
16
th Asia Simulation Conference and SCS Autumn Simulation Multi-Conference,
Beijing, China
, Oct. 8–11, pp.
379
391
.
14.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
15.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
16.
Chima
,
R.
and
Liou
,
M.-S.
,
2003
, “
Comparison of the AUSM+ and H-CUSP Schemes for Turbomachinery Applications
,”
AIAA Paper No. 2003–4120
.10.2514/6.2003-4120
17.
Johnson
,
V. J.
,
1960
,
A Compendium of the Properties of Materials at Low Temperature, National Bureau of Standards
,
Cryogenic Engineering Lab
,
Boulder, CO
.
18.
Petersen
,
H. H.
,
1970
,
The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures From 1 to 100 Bar and From Room Temperature to About 1800 K
,
Risø National Laboratory
,
Roskilde, Denmark
.
19.
Amdur
,
I.
, and
Mason
,
E. A.
,
1958
, “
Properties of Gases at Very High Temperatures
,”
Phys. Fluids
,
1
(
5
), pp.
370
383
.10.1063/1.1724353
20.
Qiu
,
L.
,
Wang
,
Y.
,
Jiao
,
Q.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2014
, “
Development of a Thermodynamically Consistent, Robust and Efficient Phase Equilibrium Solver and Its Validations
,”
Fuel
,
115
, pp.
1
16
.10.1016/j.fuel.2013.06.039
21.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
22.
Li
,
H.
, and
Yan
,
J.
,
2009
, “
Impacts of Equations of State (EOS) and Impurities on the Volume Calculation of CO2 Mixtures in the Applications of CO2 Capture and Storage (CCS) Processes
,”
Appl. Energy
,
86
(
12
), pp.
2760
2770
.10.1016/j.apenergy.2009.04.013
23.
Zhang
,
J.
,
Zhang
,
X.
,
Huang
,
W.
,
Dong
,
H.
, and
Wang
,
T.
,
2020
, “
Isentropic Analysis and Numerical Investigation on High-Pressure Hydrogen Jets With Real Gas Effects
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20256
20265
.10.1016/j.ijhydene.2020.01.111
24.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
Properties of Gases and Liquids
, 5th ed.,
McGraw-Hill Education
,
New York
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
26.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
27.
Chin
,
C.
,
Li
,
M.
,
Harkin
,
C.
,
Rochwerger
,
T.
,
Chan
,
L.
,
Ooi
,
A.
,
Risborg
,
A.
, and
Soria
,
J.
,
2013
, “
Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows
,”
ASME J. Fluids Eng.
,
135
(
3
), p. 031202.10.1115/1.4023190
28.
Srivastava
,
S.
,
Sheridan
,
A. M.
,
Henneke
,
M.
,
Raza
,
M. S.
, and
Sallam
,
K. A.
,
2022
, “
The Structure of Inclined Choked Gas Jet
,”
ASME J. Fluids Eng.
,
144
(
10
), p. 101301.10.1115/1.4054139
29.
Durbin
,
P. A.
,
1996
, “
On the k-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.10.1016/0142-727X(95)00073-Y
30.
Sarkar
,
S.
, and
Lakshmanan
,
B.
,
1991
, “
Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer
,”
AIAA J.
,
29
(
5
), pp.
743
749
.10.2514/3.10649
31.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
32.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
33.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
34.
Student
,
1908
, “
The Probable Error of a Mean
,”
Biometrika
,
6
(
1
), pp.
1
25
.10.2307/2331554
35.
Wu
,
M.
, and
Martin
,
M. P.
,
2007
, “
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Over a Compression Ramp
,”
AIAA J.
,
45
(
4
), pp.
879
889
.10.2514/1.27021
36.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Int. J. Heat Fluid Flow
,
15
(
5
), pp.
346
356
.10.1016/0142-727X(94)90048-5
37.
Radenkovic
,
D.
,
Burazer
,
J.
, and
Novkovic
,
D.
,
2014
, “
Anisotropy Analysis of Turbulent Swirl Flow
,”
FME Trans.
,
42
(
1
), pp.
19
25
.10.5937/fmet1401019R
38.
Kortbeek
,
P. J.
,
van de Ridder
,
J. J.
,
Biswas
,
S. N.
, and
Schouten
,
J. A.
,
1988
, “
Measurement of the Compressibility and Sound Velocity of Helium Up to 1 GPa
,”
Int. J. Thermophys.
,
9
(
3
), pp.
425
438
.10.1007/BF00513081
39.
Gammon
,
B. E.
,
1976
, “
The Velocity of Sound With Derived State Properties in Helium at –175 to 150 °C With Pressure to 150 Atm
,”
J. Chem. Phys.
,
64
(
6
), pp.
2556
2568
.10.1063/1.432508
40.
Schrijer
,
F. F. J.
, and
Bannink
,
W. J.
,
2010
, “
Description and Flow Assessment of the Delft Hypersonic Ludwieg Tube
,”
J. Spacecr. Rockets
,
47
(
1
), pp.
125
133
.10.2514/1.40773
41.
Wu
,
J.
, and
Radespiel
,
R.
,
2013
, “
Tandem Nozzle Supersonic Wind Tunnel Design
,”
Int. J. Eng. Syst. Modell. Simul.
,
5
(
1/2/3
), pp.
8
18
.10.1504/IJESMS.2013.052369
42.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2001
,
Elements of Gasdynamics
,
Dover
,
Mineola, New York
.
43.
Bonelli
,
F.
,
Viggiano
,
A.
, and
Magi
,
V.
,
2013
, “
A Numerical Analysis of Hydrogen Underexpanded Jets Under Real Gas Assumption
,”
ASME J. Fluids Eng.
,
135
(
12
) p. 121101.10.1115/1.4025253
You do not currently have access to this content.