Abstract
A simulative method for quantifying the discharge process of cold gas airbag inflators is presented. The pressure, mass flow and the influences of the flow field are relevant to a robust and predictive airbag deployment. Simulations in this regard are compared and validated with experimental data. It turns out that simulated mean pressures inside the inflator deviate by 5–10% from measured data. A complex and highly turbulent flow field with supersonic and subsonic flow emerges. An influential longitudinal vortex forms in the cold gas inflator, leading to a highly dynamic discharge process. This vortex would not be found with the current state-of-the-art methods, such as the simple tank test or analytical models. It is shown that a simple turbulence model such as the shear stress transport predicts the flow field with sufficient accuracy in comparison with the large eddy simulation. Real gas effects must be taken into account inside the high-pressure reservoir, leading to a faster discharge compared to the ideal gas, due to faster moving expansion waves in the reservoir. Real gas effects outside the high-pressure reservoir seem to be negligible. A simplified simulation model was developed that uses only part of the whole cold gas inflator model and serves as a good practical approach for airbag deployment simulations, with less computational effort. Thus, the method presented here can provide high-quality inflow data for airbag deployment simulations.